Желчные кислоты непосредственно участвуют в. Nb! Желчные кислоты образуются в печени из эфиров холестерола. Желчные кислоты в лекарственных препаратах

Желчные кислоты – специфические компоненты желчи, представляющие собой конечный продукт метаболизма холестерина в печени. Сегодня поговорим о том, какую функцию выполняют желчные кислоты и каково их значение в процессах переваривания и усвоения пищи.

Роль желчных кислот

– органические соединения, имеющие большое значение для нормального течения пищеварительных процессов. Это производные холановой кислоты (стероидные монокарбоновые кислоты), которые образуются в печени и вместе с желчью выделяются в 12-перстную кишку. Их основное предназначение – эмульгирование жиров, поступающих с пищей и активизация фермента липазы, которая вырабатывается поджелудочной железой для утилизации липидов. Таким образом, именно желчным кислотам отведена решающая роль в процессе расщепления и всасывания жиров, что является важным фактором в процессе переваривания пищи.

В желчи, вырабатываемой печенью человека, содержатся следующие желчные кислоты:

  • холевая;
  • хенодезоксихолевая;
  • дезоксихолевая.

В процентном выражении содержание этих соединений представлено соотношением 1:1:0,6. Кроме того, в небольших количествах в желчи содержатся такие органические соединения, как аллохолевая, литохолевая и урсодезоксихолевая кислоты.

Сегодня ученые располагают более полными сведениями о метаболизме желчных кислот в организме, об их взаимодействии с белками, жирами и клеточными структурами. Во внутренней среде организма желчные соединения играют роль поверхностно-активных веществ. То есть, они не проникают сквозь клеточные мембраны, но регулирует течение внутриклеточных процессов. С помощью новейших исследовательских методов установлено, что желчные кислоты влияют на функционирование различных отделов нервной, дыхательной системы и работу пищеварительного тракта.

Функции желчных кислот

Благодаря тому, что в структуре желчных кислот присутствуют гидроксильные группы и их соли, обладающие свойствами детергентов, кислотные соединения способны расщеплять липиды, участвовать в их переваривании и всасывании в стенки кишечника. Кроме того, желчные кислоты выполняют следующие функции:

  • способствуют росту полезной кишечной микрофлоры;
  • регулируют синтез холестерина в печени;
  • участвуют в регуляции водно-электролитного обмена;
  • нейтрализуют агрессивный желудочный сок, поступающий в кишечник с пищей;
  • способствуют усилению перистальтики кишечника и предотвращению запоров:
  • проявляют бактерицидное действие, подавляют гнилостные и бродильные процессы в кишечнике;
  • растворяют продукты липидного гидролиза, что способствует их лучшему усвоению и быстрой трансформации в вещества, готовые для обмена.

Образование желчных кислот происходит в процессе переработки холестерина печенью. После того, как пища попадает в желудок, желчный пузырь сжимается и выбрасывает порцию желчи в 12-перстную кишку. Уже на этой стадии начинается процесс расщепления и усвоения жиров и всасывание жирорастворимых витаминов – А, Е, Д, К.

После того, как пищевой комок достигает конечных отделов тонкого кишечника, появляются желчные кислоты в крови. Затем, в процессе кровообращения они поступают в печень, где соединяются с желчью.

Синтез желчных кислот

Желчные кислоты синтезируются печенью. Это сложный биохимический процесс, основанный на экскрекции избытка холестерина. При этом образуется 2 типа органических кислот:

  • Первичные желчные кислоты (холевая и хенодезоксихолевая) – синтезируются клетками печени из холестерина, в дальнейшем конъюгируются с таурином и глицином, секретируются в составе желчи.
  • Вторичные желчные кислоты (литохолевая, дезоксихолевая, аллохолевая, урсодезоксихолевая) – образуются в толстом кишечнике из первичных кислот под действием ферментов и кишечной микрофлоры. Микроорганизмы, содержащиеся в кишечнике, могут образовывать более 20 разновидностей вторичных кислот, но практически все они (кроме литохолевой и дезоксихолевой) выводятся из организма.

Синтез первичных желчных кислот проходит в два этапа – сначала образуются эфиры желчных кислот, потом начинается стадия конъюгации с таурином и глицином, в результате чего образуются таурохолевая и гликохолевая кислоты.

В пузырной желчи присутствуют именно парные желчные кислоты – конъюгаты. Процесс циркулирования желчи в здоровом организме происходит от 2-х до 6 раз в сутки, такая периодичность напрямую зависит от режима питания. В процессе циркуляции около 97% жирных кислот проходят процесс реабсорбции в кишечнике, после чего с кровотоком попадают в печень и вновь выделяются с желчью. В печеночной желчи присутствуют уже соли желчных кислот (холаты натрия и калия), что объясняет ее щелочную реакцию.

Структура желчных и парных желчных кислот разная. Парные кислоты образуются при соединении простых кислот с таурином и гликоколом, что в несколько раз повышает их растворимость и поверхностно- активные свойства. Подобные соединения содержат в своей структуре гидрофобную часть и гидрофильную головку. Молекула конъюгированной желчной кислоты разворачивается таким образом, чтобы ее гидрофобные ответвления контактировали с жиром, а гидрофильное кольцо – с водной фазой. Такое строение позволяет получать стабильную эмульсию, так как процесс дробления капли жира ускоряется, а образующиеся мельчайшие частички быстрее усваиваются и перевариваются.

Нарушения метаболизма желчных кислот

Любые нарушения синтеза и метаболизма желчных кислот приводят к сбоям пищеварительных процессов и поражению печени (вплоть до цирроза).

Снижение объема желчных кислот ведет к тому, что жиры не перевариваются и не усваиваются организмом. При этом происходит сбой механизма всасывания жирорастворимых витаминов (А, Д, К, Е), что становится причиной гиповитаминозов. Дефицит витамина К ведет к нарушению свертываемости крови, что повышает риск развития внутренних кровотечений. На нехватку этого витамина указывает стеаторея (большое количество жира в каловых массах), так называемый «жирный стул». Пониженные показатели уровня желчных кислот наблюдаются при обструкции (закупорке) желчных путей, что провоцирует нарушение выработки и застой желчи (холестаз), непроходимость печеночных протоков.

Повышенные желчные кислоты в крови становятся причиной разрушения эритроцитов, понижения уровня , снижения артериального давления. Эти изменения происходят на фоне деструктивных процессов в клетках печени и сопровождаются такими симптомами, как кожный зуд и желтуха.

Одной из причин, влияющих на уменьшение выработки желчных кислот, может стать дисбактериоз кишечника, сопровождающийся усиленным размножением патогенной микрофлоры. Кроме этого существует множество факторов, способных повлиять на нормальное течение пищеварительных процессов. Задача врача – выяснить эти причины, чтобы эффективно лечить заболевания, связанные с нарушением метаболизма желчных кислот.

Анализ на желчные кислоты

Для определения уровня желчных соединений в сыворотке крови применяют следующие методы:

  • колорометрические (энзиматические) тесты;
  • иммунное радиологическое исследование.

Наиболее информативным считается радиологический метод, с помощью которого можно определить уровень концентрации каждой составляющей желчи.

Чтобы определить количественное содержание компонентов назначают биохимию (биохимическое исследование) желчи. Этот метод имеет свои недостатки, но позволяет сделать выводы о состоянии билиарной системы.

Так, повышение уровня общего билирубина и холестерина указывает на холестаз печени, а снижение концентрации желчных кислот на фоне повышенных показателей холестерина говорит о коллоидной неустойчивости желчи. Если в желчи отмечается превышение уровня общего белка, говорят о наличии воспалительного процесса. Снижение липопротеидного индекса желчи указывает на нарушение функций печени и желчного пузыря.

Для определения выхода желчных соединений на анализ берут кал. Но поскольку это довольно трудоемкий способ, его часто заменяют другими методами диагностики, в числе которых:

  • Проба с секвестрацией желчи. В ходе исследования пациенту в течение трех дней дают холестирамин. Если на этом фоне отмечается усиление диареи, делают вывод, что всасываемость желчных кислот нарушена.
  • Проба с использованием гомотаурохолевой кислоты. В процессе исследования делается серия сцинтиграмм в течение 4-6 суток, что позволяет определить уровень мальабсорбции желчи.

При определении дисфункции метаболизма желчных кислот, кроме лабораторных методов, дополнительно прибегают к инструментальным способам диагностики. Пациента направляют на УЗИ печени, что позволяет оценить состояние и структуру паренхимы органа, объем патологической жидкости, скопившейся при воспалении, выявить нарушение проходимости желчных протоков, наличие конкрементов и прочих патологических изменений.

Кроме могут применяться следующие диагностические методики, позволяющие обнаружить патологии синтеза желчи:

  • рентген с контрастным веществом;
  • холецистохолангиография;
  • чрескожно-чреспеченочная холангиография.

Какой метод диагностики выбрать, лечащий врач решает индивидуально для каждого пациента с учетом возраста, общего состояния, клинической картины заболевания и прочих нюансов. Курс лечения специалист подбирает по результатам диагностического обследования.

Особенности терапии

В составе комплексного лечения при нарушениях пищеварения часто назначают секвестранты желчных кислот. Это группа гиполипидемических препаратов, действие которых направлено на снижение уровня холестерина в крови. Термин «секвестрант» в дословном переводе означает «изолятор», то есть такие лекарства связывают (изолируют) холестерин и те желчные кислоты, которые синтезируются из него в печени.

Секвестранты необходимы для снижения уровня липопротинов низкой плотности (ЛПНП) или так называемого «плохого холестерина», высокий уровень которого повышает риск развития тяжелых сердечно-сосудистых заболеваний и атеросклероза. Закупорка артерий холестериновыми бляшками может привести к инсульту, инфаркту, а использование секвестрантов позволяет решить эту проблему, избежать осложнений коронарного характера за счет снижения выработки ЛПНП и накопления его в крови.

Дополнительно секвестранты снижают выраженность кожного зуда, возникающего при закупоривании желчных протоков и нарушении их проходимости. Популярные представители этой группы – препараты Колестерамин (Холестерамин), Колестипол, Колесевелам.

Секвестранты желчных кислот можно принимать длительно, так как они не всасываются в кровь, но их использование ограничено плохой переносимостью. В процессе лечения часто возникают диспепсические расстройства, метеоризм, запор, тошнота, изжога, вздутие живота, изменение вкусовых ощущений.

Сегодня на замену секвестрантам приходит другая группа гиполипидемических средств – статины. Они проявляют наилучшую эффективность и обладают меньшим числом побочных эффектов. Механизм действия подобных препаратов основан на угнетении ферментов, отвечающих за образование . Назначать медикаменты этой группы может только лечащий врач после лабораторных анализов, определяющих уровень холестерина в крови.

Представители статинов – препараты Правастатин, Розувастатин, Аторвастатин, Симвастатин, Ловастатин. Польза статинов, как лекарственных средств, снижающих риск развития инфаркта и инсульта, неоспорима, но при назначении препаратов врач должен учитывать возможные противопоказаний и побочные реакции. У статинов их меньше, чем у секвестрантов, да и сами лекарства легче переносятся, тем не менее, в некоторых случаях отмечаются негативные последствия и осложнения, вызванные приемом этих средств.

Желчные кислоты - монокарбоновые гидроксикислоты из класса стероидов, производные холановой кислоты С 23 Н 39 СООН. Синонимы: жёлчные кислоты, холевые кислоты , холиевые кислоты или холеновые кислоты .

Основными типами желчных кислот, циркулирующими в организме человека, являются так называемые первичные желчные кислоты , которые первично продуцируются печенью, холевая и хенодезоксихолевая , а также вторичные , образующиеся из первичных желчных кислот в толстой кишке под действием кишечной микрофлоры: дезоксихолевая , литохолевая, аллохолевая и урсодеоксихолевая . Из вторичных кислот в кишечно-печёночной циркуляции в заметном количестве участвует только дезоксихолевая кислота, всасываемая в кровь и секретируемая затем печенью в составе желчи . В желчи желчного пузыря человека желчные кислоты находятся в виде конъюгатов холевой, дезоксихолевой и хенодезоксихолевой кислот с глицином и таурином: гликохолевой , гликодезоксихолевой, гликохенодезоксихолевой, таурохолевой , тауродезоксихолевой и таурохенодезоксихолевой кислотой - соединениями, называемыми также парными кислотами . У разных млекопитающих наборы желчных кислот могут различаться.

Желчные кислоты в лекарственных препаратах
Желчные кислоты, хенодезоксихолевая и урсодеоксихолевая являются основой препаратов, применяющихся при лечении заболеваний желчного пузыря. В последнее время урсодеоксихолевая кислота признана эффективным средством при лечении желчных рефлюксов .

В апреле 2015 года FDA дало разрешение на применение препарата Kybella для нехирургического лечения двойных подбородков, действующим веществом которого является синтетическая дезоксихолевая кислота.

В конце мая 2016 года FDA разрешило использование препарата обетихолевой кислоты Окалива (Ocaliva) для лечения первичного билиарного холангита у взрослых.


Метаболизм желчных кислот с участием микрофлоры кишечника

Желчные кислоты и заболевания пищевода
Кроме соляной кислоты и пепсин а, секретируемых в желудке , на слизистую оболочку пищевода при попадании в него могут оказывать повреждающее действие компоненты дуоденального содержимого: желчные кислоты, лизолецитин и трипсин . Из них наиболее хорошо изучена роль желчных кислот, которым, по-видимому, принадлежит основная роль в патогенезе повреждения пищевода при дуоденогастральноэзофагеальных рефлюксах . Установлено, что конъюгированные желчные кислоты (в первую очередь тауриновые конъюгаты) и лизолецитин обладают более выраженным повреждающим эффектом на слизистую пищевода при кислом рН , что определяет их синергизм с соляной кислотой в патогенезе эзофагита . Неконъюгированные желчные кислоты и трипсин более токсичны при нейтральном и слабощелочном рН, т. е. их повреждающее действие в присутствии дуоденогастроэзофагеальных рефлюксов усиливается на фоне медикаментозного подавления кислого рефлюкса . Токсичность неконъюгированных желчных кислот обусловлена преимущественно их ионизированными формами, которые легче проникают через слизистую оболочку пищевода. Приведенные данные могут объяснять факт отсутствия адекватного клинического ответа на монотерапию антисекреторными препаратами у 15-20 % больных. Более того, длительное поддержание пищеводного рН, близкого к нейтральным значениям, может выступать в роли патогенетического фактора метаплазии и дисплазии эпителия (Буеверов А.О., Лапина Т.Л.).

При лечения эзофагита, вызванного рефлюксами, в которых присутствует желчь, рекомендуется кроме ингибиторов протонной помпы параллельно назначать препараты урсодеоксихолевой кислоты . Их применение обосновано тем, что под его воздействием желчные кислоты, содержащиеся в рефлюксате, переходят в водорастворимую форму, которая в меньшей степени раздражает слизистую оболочку желудка и пищевода. Урсодеоксихолевая кислота обладает свойством изменять пул желчных кислот из токсичных на нетоксичные. При лечении урсодеоксихолевой кислотой в большинстве случаев исчезают или становятся менее интенсивными такие симптомы, как отрыжка горьким, неприятные ощущения в животе, рвота желчью. Исследования последних лет показали, что при желчном рефлюксе оптимальной следует считать дозу 500 мг в 1 сутки, разделив ее на 2 приема. Длительность курса лечения не менее 2 месяцев (

Синтезируются в печени из холестерина, т.е. в основе их структуры лежит циклопентанпергидрофинантреновое кольцо.

Бывают первичные и вторичные:

Первичные (холевая и хенодезоксихолевая)

Они синтезируются в печени путем гидроксилирования (с участием О 2 , НАДФН и

цитохрома Р 450)затем поступают в желчный пузырь, где они существуют в

видеконъюгатов с глицином или таурином (биогенный аммин), получается гликохолевая

или таурохолевая кислоты.

Т.к. в желчи много натрия и калия, то конъюгаты находятся в виде солей кроме желчных

кислот в желчи содержится ~ 5% холестерина, ~ 15% фосфолипидов, -80% желчных

солей. Если это соотношение повышается в сторону холестерина, то он выпадает в

осадок в виде камней.

Желчные кислоты поступают в желчный пузырь постоянно, а выбрасываются из него в

процессе пищеварения.

Вторичные образуются из первичных под действием микрофлоры кишечника. Из холевой образуется литохолевая, из хенодезоксихолевой - дезоксихолевая кислота. Желчные кислоты способствуют активированию панкреатической липазы и всасыванию продуктов гидролиза жиров. Только 5% желчных кислот выводится из организма, остальная часть всасывается в кишечник, поступает в печень и используется повторно, т.е. циркулирует (энтерогепатическая циркуляция).

На эмульгированные жиры действует панкреатическая липаза, расщепляя сложноэфирные связи в а-положении. Отщепление жирных кислот в р-положении происходит медленнее, следовательно, продуктами гидролиза являются жирные кислоты, глицерин и β-МАГ.

Всасывание продуктов гидролиза.

Глицерин и жирные кислоты с кроткой цепью всасываются самостоятельно, а β-МАГ и жирные кислоты с длинной цепью всасываются при помощи мицелл. Мицеллы - это шаровидные образования, имеющие гидрофобное ядро (β-МАГ, жирные кислоты с длинной цепью, жирорастворимые витамины: А, Д, Е, К) и эфиры холестерины. Гидрофильная поверхность образована желчными кислотами и холестерином. Мицеллы всасываются в тонком кишечнике, в клетках слизистой оболочки кишечника они распадаются на желчные кислоты, холестерин, жирорастворимые витамины: А, Д, Е, К, β-МАГ, жирные кислоты.

Ресинтез в клетках слизистой кишечника. Существует заболевание стеаторрея (жирный кал). Причины:

1. закупорка желчных протоков или фистула желчного пузыря (желчные кислоты не
поступают в кишечник)

2. заболевание поджелудочной железы: жиры эмульгируются, но не расщепляются
липазой, выводятся с калом,

3. нарушение всасывания (диарея)

Ресинтез - это синтез жиров из продуктов гидролиза, в результате чего образуется жир,

характерный для каждого организма, т.к. в состав жира включаются жирные кислоты


собственного организма (эндогенные).

Ресинтез начинается с активирования жирных кислот, идет с участием энергии АТФ,

КоА и фермента ацилКоА синтетазы, активированная форма жирных кислот называется

Реакция ресинтеза жиров или ТАГ включает взаимодействие β-МАГ с двумя молекулами активированной жирной кислоты. Ферменты: триацилглицеролсинтетаза, в результате образуется ТАГ, специфические для данного организма.

Ресинтезированные жиры нерастворимы в воде -» в кишечнике образуются транспортные формы жиров - хиломикроны (ХМ), (транспортируют экзогенные или пищевые жиры, имеют гидрофобное ядро и гидрофильную оболочку. Ядро включает в себя ТАГ, эфиры Хс, А, Д, Е, К, поверхность образована монослоем фосфолипидов, полярные головы которых направлены к воде, а неполярные гидрофобные жирнорастворимые хвосты к ядру. На поверхности этих частиц находятся специфические белки - апопротеины). ХМ в кишечнике образуются под действием апопротеина В48. Образовавшиеся ХМ -незрелые. Состав ХМ в процентах: белки - 2%, фосфолипиды -3%, холестерин - 2%,

ЭХс - 3%, ТАГ - 90%-»ХМ - основная транспортная форма жиров. ХМ - большие,

самые крупные из всех липопротеинов, поэтому они не проникают в кровеносные

сосуды, а ХМ незрелые поступают в лимфатические сосуды, потом через лимфатический

проток поступают в сосуды, где превращаются в зрелые ХМ, т.к. получает от

липопротеинов высокой плотности (ЛВП) апобелки С2 и Е.

В дальнейшей судьбе ХМ принимают участие жировая ткань и печень. В крови ХМ

зрелые подвергаются действию ЛП-липазы (фермент, локализованный на поверхности

эндотелия капилляров). Этот фермент узнает ХМ зрелые взаимодействуя с оспобелком

С2, который активирует этот фермент. В результате ТАГ ХМ зрелые гидролизуются

этой липазой на глицерин и жирные кислоты. Глицерин поступает в печень, где

участвует в синтезе эндогенных жиров или фосфолипидов, а жирные кислоты

депанируются в жировой ткани в виде ТАГ, либо окисляется в сердце, в мышцах и

других органах, кроме мозга. В результате действия ЛП-липазы образуются остаточные

ХМ. Они захватываются печенью посредством апобелка энергии и под действием

лизосомальных ферментов распадаются на Хс, ЭХс, А, Д, Е, К, апопротеины и 10% ТАГ.

В кишечнике синтезируется в небольшом количестве другая транспортная форма -

ЛОНП (липопротеины очень низкой плотности), они поступают в кровь, затем в

жировую ткань, где под действием ЛП-липазы из них извлекаются жиры, которые

депонируются, а из ЛОНП в результате извлечения жиров образуются ЛНП, содержащие

до 50% Хс и ЭХс.

ЛНП частично захватываются печенью.

После приема жирной пищи концентрация ХМ и липопротеинов повышается через 4-5

часов (сыворотка мутная или белая), а затем концентрация понижается, т.к. действует

ЛП-липаза. При дефекте ЛП-липазы в крови повышается концентрация ЛОНП и ХМ,

сыворотка остается мутноватой - гиперхиломикронемия или гиперлипопротеинемия.

От жировых депо, где ТАГ распадаются на жирные кислоты и глицерин под действием

ЛП-липазы (или ТАГ-липазы). Жирные кислоты в комплексе с альбумином

транспортируются к органам и тканям, где подвергаются расщеплению с целью

извлечения энергии. Мозг не использует жирные кислоты. Этот процесс называется р-

окисление жирных кислот.

β-окисление - это специфический путь катаболизма жирных кислот до ацетилКоА,

протекает в почках, в мышцах, особенно интенсивно в печени, кроме мозга, в

митохондриях.

Значение процесса - извлечение энергии из жирных кислот. Процесс назван так из-за

окисления группы-СН в р-положении. Процесс циклический, в конце каждого цикла

молекула ЖК укорачивается на 2 углеродных атома в виде ацетилКоА, который

поступает в ЦТК, а укороченная на 2 атома углерода ЖК поступает в новый цикл.

Многократное повторение процесса приводит к полному расщеплению ЖК до

ацетилКоА.

Регуляторный фермент скорость лимитирующий фермент

карнитинацилКоАтрансфераза 1, активируется этот фермент гормоном голода -

глюкагоном. Ингибируется - инсулином и регуляторным ферментом синтеза ЖК

(ацетилКоАкарбоксилаза).

Прежде чем вступить в β-окисление ЖК должна превратиться в активированную форму

АцилКоА (см. Ресинтез жиров).

Активирование происходит в цитоплазме. Мембрана митохондрий непроницаема для

активированных ЖК, их перенос происходит при участии специфического переносчика

карнитина. Под действием ферментов карнитинацилКоАтрансферазы 1и 2

активированная ЖК присоединяется сложноэфирной связью к спиртовой группе карнитина, образуется комплекс ацилкарнитин. Он диффундирует в митохондрию, где с помощью специфических ферментов ацильная группа с карнитина переносится на КоА. Перенесенная в митохондрии ЖК подвергается β-окислению включая 4 реакции в одном цикле, 2 из них имеют непосредственную связь с ЦПЭ, т.к. это реакции окисления.

В последнем цикле образуется 2 молекулы ацетилКоА.

Подсчет энергии.

ацетилКоА, образующихся при р-окислении и число циклов, необходимых для

расщепления ЖК.

Число ацетилКоА = n/2 - 10/2=5

В данном случае число ацетилКоА = 5 -> ЦТК à 5* 12=60АТФ

Число циклов = п/2 -1=4, т.к. в последнем цикле образуется 2 молекулы ацетилКоА.

В каждом цикле есть 2 реакции окисления:

1- идет с участием НАД - Р/О = 3

2- идет с участием ФАД -> Р/О - 2, т.е. в каждом цикле за счет водородов от окисляемых
субстратов 1 и 3 реакции, в сопряженном синтезе образуется 5 АТФ, 5*4 = 20 АТФ
Итог: 20 + 60 =80АТФ - 1 АТФ (на активирование ЖК) - 79

79 АТФ выделится при окислении 10-углеродной ЖК.

ЖК с нечетным числом углеродных атомов окисляется аналогично, в последнем цикле

образуется вместе с ацетилКоА пропионилКоА - в ЦТК энергетический выход будет

немного ниже.

Регуляторный фермент р-окисления активируется в период пониженной концентрации

УВ, а именно, при мышечной нагрузке и в период между приемами пищи. Период после

приема пищи называется абсорбционный, период между приемами пищи -

постабсорбционный.

Биосинтез кетоновых тел.

Кетоновые тела - это β-гидроксимасляная кислота или р-гидроксибутират, ацетоуксусная кислота или ацетоацетат, ацетон (только при патологии). Нормальная концентрация кетоновых тел в крови Змг в 100 мл или 0,03-0,05 ммоль/л. Основное кетоновое тело - это β-гидроксибутират.

Синтезируется только в печени, используется организмом в качестве источника энергии, при длительном голодании даже мозгом. Не использует кетоновые тела печень. Субстратом для синтеза является ацетилКоА (получаемый при β-окислении). Часть ацетилКоА поступает в 1ДТК, часть на синтез кетоновых тел. Процесс протекает в митохондриях. В результате синтеза кетоновых тел образуется вещество -промежуточное соединение, которое играет большую роль при синтезе кетоновых тел или Хс - это вещество называется 3-гидрокси-β-метилглутарилКоА (ГМГКоА). 2 молекулы ацетилКоА под действием фермента тиолаза превращается в ацетоацетилКоА. Он под действием фермента 3-гидрокси-β-метилглутарилКоАсинтетазы с участием еще одной молекулы ацетилКоА образует β-гидрокси-β-метилглутарилКоА. Под действием β-гидрокси-β-метилглутарилсинтетазы образуется ацетоацетат. Про патологии происходит декарбоксилирование ацетоацетата с образованием ацетона.

Распад кетоновых тел.

Для того, чтобы кетоновые тела использовались в качестве источника энергии, необходимо активировать ацетоуксусную кислоту. Реакция протекает под действием фермента сукцинилКоАацетоацетаттрансферазы (его нет в печени, поэтому печень кетоновые тела не использует).

Подсчитаем сколько молекул АТФ выделяется при расщеплении ацетоуксусной кислоты - 24 молекулы АТФ. Так как при регенерации сукцината в сукцинилКоА затрачивается 1 АТФ, то общее количество АТФ - 23 молекулы. При окислении β-гидроксибутирата - 3 АТФ + 23 = 26 АТФ выделяется.

При патологических состояниях, таких как сахарный диабет (недостаток инсулина) или при длительном голодании скорость синтеза кетоновых тел резко повышается и концентрация их в крови повышается до 90мг /100мл, а при сахарном диабете - до 140мг/100мл. При этих состояниях образуется ацетон, который выделяется с выдыхаемым воздухом, такое состояние называется кетоз. В результате накопления этих кислот в крови рН сдвигается в кислую сторону и такое состояние организма называется метаболический некомпенсированный ацидоз (помочь можно в/в введении гипертонического раствора глюкозы).

Почему при голодании и сахарном диабете концентрация кетоновых тел резко увеличивается? В условиях длительного голодания и сахарного диабета, когда клетки находятся в состоянии энергетического голода (нет глюкозы) и поэтому -> основным источником энергии в этих условиях становятся ЖК, в составе жиров, депонированных в жировой ткани. Распад жиров активируется глюкагоном (гормон голода), расщепившиеся жиры жировой ткани на глицерин и ЖК, мобилизуются, глицерин идет в печень, а ЖК подвергаются β-окислению во всех органах, кроме мозга. В результате образуется много ацетилКоА, который в норме практически весь поступил бы в ЦТК, но в условиях голодания и сахарного диабета ЦТК тормозится, т.к. оксалоацетат будет использоваться для синтеза глюкозы в глюконеогенезе, необходимой для работы мозга в этих условиях, т.к. мозг ЖК не использует.

Поэтому основное количество ацетилКоА, образующегося при р-окислении, идет на синтез кетоновых тел à их концентрация повышается.

Биосинтез высших ЖК.

Это синтез их из ацетилКоА, полученного при расщеплении углеводов. Протекает в цитоплазме и наиболее интенсивно в печени, в почках, в молочной железе в период лактации. В организме человека синтезируется в основном пальмитиновая кислота (С 16), а в митохондриях гепатоцитов происходит удлинение цепей синтезированных ЖК.

Регуляторная реакция процесса - образование из ацетилКоА малонилКоА под действием фермента ацетилКоАкарбоксилаза, коферментом является биотип или витамин Н. Активируется этот фермент гормоном инсулином, в период достаточного поступления углеводов (много глюкозы -> гликолиз -»ПВК -» много ацетилКоА для синтеза ЖК). Данный регуляторный фермент ингибирует регуляторный фермент β-окисления (карнитинацилтрансферазу).

В синтезе ЖК во всех этапах вместо HSKoA участвует ацилпереносящий белок (АПБ). В двух реакциях будет участвовать кофермент НАДФН, как источник Н в реакциях восстановления (НАДФН из пентозофосфатного пути).

Синтез ЖК «похож» на β-окисление, но наоборот: процесс циклический, но в конце каждого цикла происходит удлинение цепи ЖК на 2 углеродных атома. В конце синтеза пальмитиновой кислоты происходит отщепление АПБ. Процесс синтеза осуществляется пальмитатсинтетазным комплексом. Это доменный белок (состоит из 1 ППЦ, которая в нескольких участках формирует домен, в третичной структуре обладающий ферментативной активностью).

Включает в себя 6 участков, обладающих ферментативной активностью. Все вместе они объединены в АПБ, который связан с фосфопантонеатом (фосфорилированная пантотеновая кислота с SH-группой на конце). На этом конце и протекают все реакции, то есть S не выделяется в среду. Пальмитатсинтетаза имеет 2 функциональные единицы, каждая из которых синтезирует 1 пальмитиновую кислоту.

Строение пальмитатсинтетазного комплекса.

1 фермент - трикетоацилсинтаза

2 - трансацилаза

3 - еноилредуктаза (фермент, у которого в качестве кофермента будет НАДФН)

4 - гидротаза

5 - кетоацилредуктаза (НАДФН+Н +)

6 - тиоэстераза (будет отщеплять синтезированную ЖК от АПБ)

Синтез жиров (ТАГ).

Обмен жиров или ТАГ включает в себя несколько стадий: 1). Синтез жиров (из глюкозы, эндогенные жиры), 2). Депонирование жиров, 3). Мобилизация.

В организме жиры могут синтезироваться из глицерина и из глюкозы. Основные 2 субстрата для синтеза жиров:

1) α-глицеролфосфат (α-ГФ)

2) ацилКоА (активированная ЖК).

Синтез ТАГ происходит через образование фосфатидной кислоты.

α-ГФ в организме человека может образовываться двумя путями: в органах, в которых активен фермент глицеролкиназа, ГФ может образоваться из глицерина, в органах, где активность фермента низкая, ГФ образуется из продуктов гликолиза (т.е. из глюкозы).

Если в реакцию вступает восстановленная форма НАД (НАДН+Н), то это реакция

восстановления и фермент называется по продукту + «ДГ».

Биосинтез ТАГ наиболее интенсивно протекает в печени и жировой ткани. В жировой

ткани синтез ТАГ протекает из УВ, т.е. часть глюкозы, поступившей с пищей может

превращаться в жиры (когда углеводов поступает больше, чем необходимо для

возобновления запаса гликогена в печени и мышцах).

Жиры, синтезированные в печени (двумя путями) упаковываются в частицы ЛОИП,

поступают в кровь -> ЛП-липазе, которая гидролизует ТАГ или жиры из этих частиц на

ЖК и глицерин. ЖК поступают в жировую ткань, где депонируются в виде жиров, либо

используются как источник энергии органами и тканями (р-окисление), а глицерин

поступает в печень, где может использоваться для синтеза ТАГ или фосфолипидов.

В жировой ткани депонируются жиры, которые образованы из глюкозы, глюкоза дает

оба или 2 субстрата для синтеза жира.

После приема пищи (абсорбционный период) f концентрация глюкозы в крови, |

концентрация инсулина, инсулин активирует:

1. транспорт глюкозы в адипоциты,

2. ЛП-липазу.

Активирует синтез жира в жировой ткани и его депонирование -> существует 2 источника жиров для депонирования в жировой ткани:

1. экзогенные (ТАГ из хиломикронов и ЛОНП кишечника, переносящие пищевые
жиры)

2. эндогенные жиры (из ЛОНП печени и образующиеся ТАГ в самих жировых
клетках).

Мобилизация жиров - это гидролиз жиров, находящихся в адипоцитах до ЖК и глицерина, под действием гормонзависимой ТАГ-липазы, которая находится в клетках и активируется в зависимости от потребностей организма в источниках энергии (в постабсорбтивном периоде, т.е. в промежутках между приемами пищи, при голодании, стрессе, длительной физической работе, т.е. активируется адреналином, глюкагоном и соматотропным гормоном (СТГ).

При длительном голодании концентрация глюкагона увел., это приводит к снижению синтеза ЖК, увеличению β-окисления, увеличеню мобилизации жиров из депо, увеличен синтез кетоновых тел, увеличен глюконеогенез.

Отличие действия инсулина в жировой ткани и печени:

Концентрации инсулина в крови приводит к активности ПФП, синтеза ЖК, гликолиза (глюкокиназа, фосфофруктокиназа (ФФК), пируваткиназа - ферменты гликолиза; глюкозо-6-ДГ - фермент ПФП; ацетилКоАкарбоксилаза - фермент синтеза ЖК).

В жировой ткани активируется ЛП-липаза и депонирование жиров, активируется поступление глюкозы в адипоциты и образование из нее жиров, которые тоже депонируются.

В организме человека существует 2 формы депонированного энергетического материала:
1. гликоген; 2. ТАГ или нейтральные жиры.

Отличаются по запасам и очередности мобилизации. Гликогена в печени от 120-150г, может быть до 200, жиров в норме ~ 10кг.

Гликогена хватает (в качестве источника энергии) на 1 сутки голодания, а жиров - на 5-7 недель.

При голодании и физической нагрузке в первую очередь используются запасы гликогена, затем постепенно нарастает скорость мобилизации жиров. Кратковременные физические.

нагрузки обеспечиваются энергией, за счет распада гликогена, а при длительных физических нагрузках используются жиры.

При нормальном питании количество жиров в жировой ткани постоянно, но жиры постоянно обновляются. При длительном голодании и физических нагрузках скорость мобилизации жиров больше, чем скорость депонирования à количество депонированных жиров уменьш. (похудение). Если скорость мобилизации ниже, чем скорость депонирования - ожирение.

Причины: несоответствие между количеством потребляемой пищи и энергозатратами организма, и поскольку мобилизация и депонирование жиров регулируются гормонами -» ожирение является характерным признаком эндокринных заболеваний.

Обмен холестерина. Биохимические основы возникновения атеросклероза. Основные функции холестерина в организме:

1. основная: большая часть Хс используется для построения клеточных мембран;

2. Хс служит предшественником желчных кислот;

3. служит предшественником стероидных гормонов и витамина D3 (половые
гормоны и гормоны коры надпочечников).

В организме на долю Хс приходится основная масса всех стероидов ~ 140г. Синтезируется Хс в основном в печени (-80%), в тонком кишечнике (-10%), в коже (-5%), скорость синтеза Хс в организме зависит от количества экзогенного Хс, если с пищей поступает более 1г Хс (2-3г) синтез собственного эндогенного Хс ингибируется, если Хс поступает мало (вегетарианцы) скорость синтеза эндогенного Хс |. Нарушение в регуляции синтеза Хс (а также образование его транспортных форм -> гиперхолестеринемия -» атеросклероз -> ИБС - инфаркт миокарда). Норма поступления Хс >1г (яйца, масло (сливочное), печень, мозг).

Синтез холестерина.

Хс с пищей поступает преимущественно в виде эфиров Хс (Хс этерифицирован ЖК по третьему положению). В кишечнике под действием фермента холестеролэстеразы ЭХс расщепляется на Хс и ЖК. После всасывания в кишечнике Хс этерифицируется и образуются ЭХс. Этот Хс и Хс, синтезированный в кишечнике (10%), встраиваются в хиломикроны (90%) и ЛОНП (10%) -> кровь -> ЛП-липаза. Под действием ЛП-липазы из хиломикронов и ЛОНП извлекаются жиры или ТАГ. Из хиломикронов образуются остаточные хиломикроны -> печень, где из них высвобождается Хс, который используется для синтеза желчных кислот, либо при избыточном поступлении ингибирует синтез собственного Хс, а из ЛОНП образуется ЛНП (содержание Хс, в которых более 50 %). На поверхности ЛНП находится апобелок β100. ЛНП -> органы и ткани, где клетки узнают ЛНП, за счет β100.

ЛНП поглощается клетками, содержащийся в них Хс используется для нужд клетки (для построения мембран).

Таким образом, функция ЛНП - снабжение Хс органов и тканей организма. В печени синтезируется собственный Хс, ферменты синтеза Хс имеются во всех клетках, имеющих ядро. Синтезируется Хс из ацетилКоА. Различают 3 этапа:

1. образование мевалоновой кислоты;

2. образование сквалена;

3. образование Хс.

1 этап протекает в цитоплазме, а остальные метаболиты не растворимы в воде à 2иЗ этапы протекают в мембранном слое ЭПР.

1 стадия похожа на синтез кетоновых тел. Регуляторная реакция - образование мевалоновой кислоты, катализируется регуляторным ферментом. ГМГ-редуктазой, она необратима, скорость лимитирующая. Этот фермент регулируется:

1. аллостерически, по механизму обратной отрицательной связи Хс или его
производными, ингибируется фермент экзогенным Хс, поступающим с пищей (более 1г в
сутки), желчными кислотами, активируется инсулином, эстрогенами,

2. изменяется количество фермента, которое контролируется на уровне экспрессии гена.

Биосинтез Хс.

На синтез одной молекулы Хс (С27 необходимо 18 молекул АТФ и 18 молекул ацетилКоА.

2 стадия: мевалоновая кислота превращается в сквален.


3 стадия


сквален


холестерин


Синтезируемый в печени Хс упаковывается в ЛОНП вместе с жирами, которые поступают в кровь, из них образуются ЛНП, которые снабжают Хс органы и ткани. Как предотвратить накопление Хс в органах и тканях?

Этому способствуют другие транспортные частицы: ЛВПЗ, которые синтезируются в печени и содержат небольшое количество Хс. Они поступают в кровь, взаимодействуют с ЛНП либо с клетками тканей -> кровь, забирают избыток Хс из них.

Функционирование ЛНП и ЛВП поддерживает гомеостаз Хс в клетках.

Каким образом ЛВП забирают избыток Хс из других липопротеинов, органов и тканей?

Это связано с присутствием на поверхности ЛВПЗ фермента, который называется

лицетинХсацилтрансфераза (ЛХАТ). Здесь же на поверхности присутствует его

кофактор - А1. Этот фермент отщепляет ЖК от фосфолипидов на поверхности ЛВПЗ и

переносит ее на гидроксильную группу Хс.

В результате образуются ЭХс.

ЭХс - гидрофобные, погружаются внутрь ЛВПЗ.

Концентрация Хс на поверхности снижается и освобождается место для Хс и других

Жёлчные кислоты (синоним: холевые кислоты, холиевые кислоты, холеновые кислоты) - органические кислоты, входящие в состав желчи и представляющие собой конечные продукты обмена холестерина; играют важную роль в процессах переваривания и всасывания жиров; способствуют росту и функционированию нормальной кишечной микрофлоры.

Желчные кислоты - производные холановой кислоты С 23 Н 39 СООН, в молекуле которой к кольцевой структуре присоединены гидроксильные группы. Основными Ж. к., обнаруживаемыми в жёлчи человека, являются холевая кислота (3a , 7a , 12a -триокси-5b -холановая кислота), хенодезоксихолевая кислота (антроподезоксихолевая кислота. 3a , 7a -диокси-5b -холановая кислота) и дезоксихолевая кислота (3a , 12a -диокси-5b -холановая кислота). В значительно меньших количествах в желчи обнаружены стереоизомеры холеной и дезоксихолевой кислот - аллохолевая, урсодезоксихолевая и литохолевая (3a -маноокси-5b -холановая) кислоты. Холевая и хенодезоксихолевая кислоты - так называемые первичные Ж. к. - образуются в печени при окислении холестерина , а дезоксихолевая и литохолевая кислоты образуются из первичных Ж. к. в кишечнике под влиянием ферментов микроорганизмов кишечной микрофлоры. Количественное соотношение холевой, хенодезоксихолевой и дезоксихолевой кислот и желчи в норме составляет 1:1:0,6.

В пузырной желчи Ж. к. присутствуют главным образом в виде парных соединений - конъюгатов. В результате конъюгирования Ж. к. с аминокислотой глицином образуются гликохолевая или гликохенодезоксихолевая кислоты. При конъюгировании Ж. к. с таурином (2-аминоэтан-сульфокислотой C 2 H 7 O 3 N 5), продуктом деградации аминокислоты цистеина, образуются таурохолевая или тауродезоксихолевая кислоты. Конъюгирование Ж. к. включает стадии образования КоА - эфиров Ж. к. и соединения молекулы Ж. к. с глицином или таурином посредством амидной связи при участии лизосомного фермента ацилтрансферазы. Соотношение глициновых и тауриновых конъюгатов Ж. к. в желчи, составляющее в среднем 3:1, может изменяться в зависимости от состава пищи и гормонального статуса организма.

Относительное содержание глициновых конъюгатов Ж. к. в желчи повышается при преобладании в пище углеводов, при заболеваниях, сопровождающихся белковой ю, пониженной функцией щитовидной железы, а содержание тауриновых конъюгатов возрастает при высокобелковой диете и под действием кортикостероидных гормонов.

В печеночной желчи Ж. к. находятся в виде желчнокислых солей (холатов, или холеатов) калия и натрия, что объясняет щелочную реакцию печеночной желчи. В кишечнике соли Ж. к. обеспечивают эмульгирование жира и стабилизацию образующейся жировой эмульсии, а также активируют панкреатическую липазу, смещая оптимум ее активности в область значений рН, характерных для содержимого двенадцатиперстной кишки.

Одной из основных функций Ж. к. является перенос липидов в водной среде, который обеспечивается благодаря детергентным свойствам Ж. к. (см. Детергенты ), т.е. их способности образовывать мицеллярный раствор липидов в водной среде. В печени при участии Ж. к. формируются мицеллы, в виде которых секретируемые печенью липиды переносятся в кишечник в гомогенном растворе, т.е. в желчи. За счет детергентных свойств Ж. к. в кишечнике образуются устойчивые мицеллы, содержащие продукты расщепления жиров липазой,

холестерин, фосфолипиды, жирорастворимые витамины и обеспечивающие перенос этих компонентов к всасывающей поверхности кишечного эпителия. В кишечнике (главным образом в подвздошной кишке) Ж. к. всасываются в кровь, с кровью вновь возвращаются в печень и снова секретируются в составе желчи (так называемая портально-билиарная циркуляция Ж. к.), поэтому 85-90% всего количества желчных кислот, содержащихся в желчи, являются Ж. к., абсорбированными в кишечнике. Портально-билиарной циркуляции Ж. к. способствует то, что конъюгаты Ж. к. легко всасываются в кишечнике, т.к. они водорастворимы. Общее количество Ж. к., участвующих в обмене веществ, у человека составляет 2,8-3,5 г , а количество оборотов Ж. к. за сутки равно 5-6. В кишечнике 10-15% общего количества желчных кислот подвергается расщеплению под действием ферментов микроорганизмов кишечной микрофлоры, а продукты деградации Ж. к. выделяются с калом. Секреция Ж. к. в составе желчи и превращения Ж. к. в кишечнике играют важную роль в пищеварении и обмене холестерина .

В норме в моче человека Ж. к. не обнаруживаются. На ранних стадиях обтурационной желтухи и при острых ах в моче появляются небольшие количества Ж.

к. В крови содержание и состав Ж. к. изменяется при заболеваниях печени и желчного пузыря, что позволяет использовать эти данные в диагностических целях. Накопление Ж. к. в крови отмечают при поражениях паренхимы печени и затруднении оттока желчи. Повышение содержания Ж. к. в крови оказывает повреждающее действие на клетки печени, вызывает брадикардию и артериальную гипотензию, гемолиз эритроцитов, нарушение процессов свертывания крови и уменьшение СОЭ. При повышении концентрации Ж. к. в крови характерно появление кожного

За несколько последних десятилетий удалось получить много новой информации о желчи и ее кислотах. В связи с этим возникла необходимость пересмотра и расширения представлений об их значении для жизнедеятельности человеческого организма.

Роль желчных кислот. Общие сведения

Быстрое развитие и усовершенствование исследовательских методов дало возможность более детально изучить желчные кислоты. Например, сейчас имеется более ясное представление о метаболизме, об их взаимодействии с белками, липидами, пигментами и содержании в тканях и жидкостях. Подтверждена информация, свидетельствующая о том, что желчные кислоты имеют огромное значение не только для нормального функционирования желудочно-кишечного тракта. Эти соединения участвуют во многих процессах в организме. Немаловажно и то, что благодаря применению новейших исследовательских методов, удалось наиболее точно определить, как ведут себя желчные кислоты в крови, а также каким образом оказывают влияние на дыхательную систему. Помимо всего прочего, соединения воздействуют на некоторые отделы ЦНС. Доказано их значение во внутриклеточных и внешних мембранных процессах. Это обусловлено тем, что желчные кислоты выступают в качестве поверхностно-активных веществ во внутренней среде организма.

Исторические факты

Этот тип химических соединений открыл ученый Штреккер в середине XIX века. Ему удалось выяснить, что желчь имеет две Первая из них содержит в себе серу. Вторая также содержит данное вещество, однако имеет совершенно другую формулу. В процессе расщепления этих химических соединений образуется холевая кислота. В результате превращения первого указанного выше соединения формируется глицерин. В то же время, другая желчная кислота образует совершенно иное вещество. Оно называется таурин. В результате исходным двум соединениям были присвоены названия, одноименные производимым веществам. Так появились тауро- и гликохолевая кислота соответственно. Это открытие ученого дало новый толчок к изучению этого класса химических соединений.

Секвестранты желчных кислот

Эти вещества представляют собой группу препаратов, оказывающих гиполипидемическое воздействие на организм человека. В последние годы они активно использовались для снижения уровня холестерина в крови. Это позволило существенно снизить риск возникновения различных сердечно-сосудистых патологий и ишемической болезни. На данный момент в современной медицине широко используется другая группа более эффективных препаратов. Этими являются статины. Они применяются гораздо чаще из-за меньшего количества побочных действий. В нынешнее время секвестранты желчных кислот применяются все реже. Иногда их используют исключительно в рамках комплексного и вспомогательного лечения.

Детальная информация

Стероидный класс включает в себя монокарбаиновые оксикислоты. Они представляют собой активные которые плохо растворяются в воде. Данные кислоты возникают в результате переработки печенью холестерина. У млекопитающих они состоят из 24 углеродных атомов. Состав доминирующих желчных соединений у разных видов животных различен. Данные типы образуют в организме таухолевую и гликолевую кислоты. Хенодезоксихолевые и холевые соединения относятся к классу первичных. Как они образуются? В данном процессе имеет значение биохимия печени. Первичные соединения возникают в результате синтеза холестерина. Далее происходит процесс конъюгирования вместе с таурином или глицином. Затем эти типы кислот подвергаются секреции в желчи. Литохолевые и дезоксихолевые вещества входят в состав вторичных соединений. Они образуются в толстом кишечнике из первичных кислот под воздействием местных бактерий. Скорость всасывания дезоксихолевых соединений значительно выше, чем у литохолевых. Другие вторичные желчные кислоты возникают в очень малых объемах. Например, к их числу относится урсодезоксихолевая. Если имеет место хронический холестаз, то данные соединения присутствуют в огромном количестве. Нормальное соотношение этих веществ - 3:1. В то время как при холестазе содержание желчных кислот изрядно превышено. Мицеллы представляют собой агрегаты из их молекул. Они образуются только тогда, когда концентрация данных соединений в водном растворе превышает предельную отметку. Это обусловлено тем, что желчные кислоты относятся к поверхностно-активным веществам.

Особенности холестерина

Это вещество плохо растворяется в воде. От соотношения концентрации липидов, а также молярной концентрации лецитина и кислот зависит скорость растворимости холестерина в желчи. Смешанные мицеллы возникают только при сохранении нормальной пропорции всех этих элементов. Они содержат в себе холестерин. Осадка его кристаллов осуществляется при условии нарушения данного соотношения. кислот не ограничиваются выведением холестерина из организма. Они способствуют всасыванию жиров в кишечнике. Мицеллы также образуются во время этого процесса.

Движение соединений

Одним из главных условий образования желчи является активное перемещение кислот. Эти соединения играют не последнюю роль в транспортировке электролитов, воды в тонкой и толстой кишках. Они представляют собой твердые порошкообразные вещества. Температура их плавления достаточно высока. Они обладают горьким вкусом. Желчные кислоты плохо растворяются в воде, тогда как в щелочных и спиртовых растворах - хорошо. Эти соединения являются производными холановой кислоты. Все подобные кислоты возникают исключительно в холестериновых гепатоцитах.

Влияние

Основное значение среди всех кислотных соединений имеют соли. Это обусловлено рядом свойств данных продуктов. Так, например, они более полярны, нежели соли свободных желчных кислот, имеют маленький размер предельной концентрации образования мицелл и быстрее секретируются. Печень является единственным органом, способным превращать холестерин в особые холановые кислоты. Это обусловлено тем, что ферменты, которые принимают участие в конъюгации, содержатся в гепатоцитах. Изменение их активности находится в прямой зависимости от состава и скорости колебаний желчных кислот печени. Процесс синтеза регулируется механизмом Это означает, что интенсивность данного явления находится в соотношении с током вторичных желчных кислот в печени. Норма их синтеза в организме человека довольно низкая - от двухсот до трехсот миллиграмм в сутки.

Основные задачи

Желчные кислоты имеют обширный диапазон назначения. В человеческом организме они главным образом осуществляют синтез холестерина и влияют на всасывание жиров из кишечника. Кроме того, соединения участвуют в регуляции желчевыделения и желчеобразования. Эти вещества также оказывают сильное влияние на процесс переваривания и усвоения липидов. Их соединения собираются в тонкой кишке. Процесс происходит под воздействием моноглицеридов и свободных жирных кислот, которые находятся на поверхности жировых отложений. При этом образуется тонкая пленка, которая препятствует соединению маленьких капель жира в более объемные. Благодаря этому происходит сильное снижение Это приводит к образованию мицеллярных растворов. Они, в свою очередь, облегчают действие панкреатической липазы. С помощью жировой реакции она расщепляет их на глицерин, который в дальнейшем всасывается стенкой кишечника. Желчные кислоты соединяются с жирными, не растворившимися в воде, и образуют холеиновые. Данные соединения легко расщепляются и быстро всасываются с помощью ворсинок верхней части тонкой кишки. Холеиновые кислоты преобразуются в мицеллы. Далее они всасываются внутрь клеток, при этом без труда преодолевая их мембраны.

Была получена информация самых последних исследований в этой области. Они доказывают, что взаимосвязь жирных и желчных кислот в клетке распадается. Первые представляют собой конечный результат всасывания липидов. Последние - посредством портальной вены проникают в печень и кровь.