Механические характеристики асинхронного электродвигателя. Механические характеристики асинхронных двигателей. Двигательный режим Механическая характеристика асинхронного двигателя представляет

1

При построении моделей автоматизированного электропривода необходимо учитывать сложность электромеханических процессов, протекающих в двигателе при его работе. Результаты, полученные при математическом расчёте, следует проверять опытным путем. Таким образом, возникает потребность определения характеристик электродвигателей в ходе натурного эксперимента. Сведения, полученные в ходе такого эксперимента, дают возможность апробации построенной математической модели. В статье рассмотрен способ построения механических характеристик асинхронного двигателя с короткозамкнутым ротором, проводится экспериментальная проверка рассчитанной механической характеристики на примере системы, состоящей из асинхронного двигателя, к валу которого в качестве нагрузки подключен двигатель постоянного тока независимого возбуждения, оценивается погрешность расчёта, сделан вывод о возможности применения полученных результатов для дальнейших исследований. При проведении эксперимента используется лабораторный стенд НТЦ-13.00.000.

асинхронный двигатель

двигатель постоянного тока

механическая характеристика

схема замещения

насыщение магнитной системы.

1. Воронин С. Г. Электропривод летательных аппаратов: Учебно-методический комплекс. - Offline версия 1.0. - Челябинск,1995-2011.- ил. 493, список лит. - 26 назв.

2. Москаленко В. В. Электрический привод: учебник для студ. высш. учеб. заве­дений. - М.: Издательский центр «Акаде­мия», 2007. - 368 с.

3. Мощинский Ю. А., Беспалов В. Я., Кирякин А. А. Определение параметров схемы замещения асинхронной машины по каталожным данным // Электричество. - №4/98. - 1998. - С. 38-42.

4. Технический каталог, издание второе, исправленное и дополненное / Владимирский электромоторный завод. - 74 с.

5. Austin Hughes Electric Motors and Drives Fundamentals, Types and Applications. - Third edition / School of Electronic and Electrical Engineering, University of Leeds. - 2006. - 431 р.

Введение

Асинхронный двигатель (АД) - электрический двигатель, нашедший очень широкое применение в различных отраслях промышленности и сельского хозяйства. АД с короткозамкнутым ротором обладает особенностями, обуславливающими его широкое распространение: простота в изготовлении, а это означает низкую начальную стоимость и высокую надежность; высокая эффективность вместе с низкими затратами на обслуживание приводят в итоге к низким общим эксплуатационным расходам; возможность работы непосредственно от сети переменного тока.

Режимы работы асинхронного электродвигателя

Двигатели с короткозамкнутым ротором - асинхронные машины, скорость которых зависит от частоты питающего напряжения, числа пар полюсов и нагрузки на валу. Как правило, при поддержании постоянного напряжения питания и частоты, если игнорируется изменение температуры, момент на валу будет зависеть от скольжения.

Вращающий момент АД можно определить по формуле Клосса:

где , - критический момент, - критическое скольжение.

Кроме двигательного режима асинхронный двигатель имеет ещё три тормозных режима: а) генераторный тормозной с отдачей энергии в сеть; б) торможение противовключением; в) динамическое торможение.

При положительном скольжении машина с короткозамкнутым ротором будет действовать как двигатель, при отрицательном скольжении - как генератор. Из этого следует, что ток якоря двигателя с короткозамкнутым ротором будет зависеть только от скольжения. При выходе машины на синхронную скорость ток будет минимальным.

Генераторное торможение АД с отдачей энергии в сеть наступает при частоте вращения ротора, превышающей синхронную. В этом режиме электродвигатель отдаёт в сеть активную энергию, а из сети в электродвигатель поступает реактивная энергия, необходимая для создания электромагнитного поля.

Механическая характеристика для генераторного режима является продолжением характеристики двигательного режима во второй квадрант осей координат.

Торможение противовключением соответствует направлению вращения магнитного поля статора, противоположному вращению ротора. В этом режиме скольжение больше единицы, а частота вращения ротора по отношению к частоте вращения поля статора - отрицательна. Ток в роторе, а следовательно, и в статоре достигает большой величины. Для ограничения этого тока в цепь ротора вводят добавочное сопротивление.

Режим торможения противовключением наступает при изменении направления вращения магнитного поля статора, в то время как ротор электродвигателя и соединённые с ним механизмы продолжают вращение по инерции. Этот режим возможен также и в случае, когда поле статора не меняет направления вращения, а ротор под действием внешнего момента изменяет направление вращения.

В данной статье рассмотрим построение механической характеристики асинхронного двигателя в двигательном режиме.

Построение механической характеристики с помощью модели

Паспортные данные АД ДМТ f 011-6у1: Uф =220 - номинальное фазное напряжение, В; p=3 - число пар полюсов обмоток; n=880 - скорость вращения номинальная, об/мин; Pн=1400 - мощность номинальная, Вт; Iн=5,3 - ток ротора номинальный, А; η = 0.615 - к.п.д. номинальный, %; cosφ = 0.65 - cos(φ) номинальный; J=0.021 - момент инерции ротора, кг·м 2 ; Ki = 5.25 - кратность пускового тока; Kп = 2.36 - кратность пускового момента; Kм = 2.68 - кратность критического момента.

Для исследования эксплуатационных режимов асинхронных двигателей используются рабочие и механические характеристики, которые определяются экспериментально или рассчитываются на основе схемы замещения (СЗ). Для применения СЗ (рис.1) необходимо знать её параметры:

  • R 1 , R 2 ", R M - активные сопротивления фаз статора, ротора и ветви намагничивания;
  • X 1 , X 2 ", X M - индуктивные сопротивления рассеяния фаз статора ротора и ветви намагничивания.

Эти параметры требуются для определения пусковых токов при выборе магнитных пускателей и контакторов, при выполнении защит от перегрузок, для регулирования и настройки системы управления электроприводом, для моделирования переходных процессов. Кроме того, они необходимы для расчета пускового режима АД, определения характеристик асинхронного генератора, а также при проектировании асинхронных машин с целью сопоставления исходных и проектных параметров .

Рис. 1. Схема замещения асинхронного двигателя

Воспользуемся методикой расчёта параметров схемы замещения для определения активных и реактивных сопротивлений фаз статора и ротора. Значения коэффициента полезного действия и коэффициента мощности при частичных нагрузках, необходимые для расчётов, приведены в техническом каталоге : pf = 0.5 - коэффициент частичной нагрузки, %; Ppf = Pн·pf - мощность при частичной нагрузке, Вт; η _pf = 0.56 - к.п.д. при частичной нагрузке, %; cosφ_pf = 0.4 - cos(φ) при частичной нагрузке.

Значения сопротивлений в схеме замещения: X 1 =4.58 - реактивное сопротивление статора, Ом; X 2 "=6.33 - реактивное сопротивление ротора, Ом; R 1 =3.32 - активное сопротивление статора, Ом; R 2 "=6.77 - активное сопротивление ротора, Ом.

Построим механическую характеристику асинхронного двигателя по формуле Клосса (1).

Скольжение определяют из выражения вида:

где - скорость вращения ротора АД, рад/сек,

синхронная скорость вращения:

Критическая скорость вращения ротора:

. (4)

Критическое скольжение:

Точку критического момента определим из выражения

Пусковой момент определим по формуле Клосса при s=1:

. (7)

По произведенным расчетам построим механическую характеристику АД (рис. 4). Для ее проверки на практике проведем эксперимент.

Построение экспериментальной механической характеристики

При проведении эксперимента используется лабораторный стенд НТЦ-13.00.000 «Электропривод». Имеется система, состоящая из АД, к валу которого в качестве нагрузки подключен двигатель постоянного тока (ДПТ) независимого возбуждения. Необходимо построить механическую характеристику асинхронного двигателя, используя паспортные данные асинхронной и синхронной машин и показания датчиков. Имеем возможность изменять напряжение обмотки возбуждения ДПТ, измерять токи на якоре синхронного и асинхронного двигателя, частоту вращения вала. Подключим АД к источнику питания и будем нагружать его, изменяя ток обмотки возбуждения ДПТ. Проведя эксперимент, составим таблицу значений из показаний датчиков:

Таблица 1 Показания датчиков при нагрузке асинхронного двигателя

где Iв - ток обмотки возбуждения двигателя постоянного тока, I я - ток якоря двигателя постоянного тока, Ω - скорость вращения ротора асинхронного двигателя, I 2 - ток ротора асинхронного двигателя.

Паспортные данные синхронной машины типа 2П H90L УХЛ4: Pн=0,55 - номинальная мощность, кВт; Uном=220 - номинальное напряжение, В; Uв.ном=220 - напряжение возбуждения номинальное, В; Iя.ном=3,32 - номинальный ток якоря, А; Iв.ном=400 - ток возбуждения номинальный, мА; Rя=16,4 - сопротивление якоря, Ом; nн=1500 - скорость вращения номинальная, об/мин; Jдв=0,005 - момент инерции, кг·м 2 ; 2р п =4 - число пар полюсов; 2а=2 - число параллельных ветвей обмотки якоря; N=120 - число активных проводников обмотки якоря.

В ротор ДПТ ток поступает через одну щетку, протекает через все витки обмотки ротора и выходит через другую щетку. Точка контакта обмотки статора с обмоткой ротора - через коллекторную пластину или сегменты, на которые нажимает щетка в это время (щетка обычно более широка, чем один сегмент). Так как каждый отдельный виток обмотки ротора взаимосвязан с сегментом коллектора, ток фактически проходит через все витки и через все коллекторные пластины на его пути через ротор.

Рис. 2. Токи, протекающие в роторе двигателя постоянного тока с двумя полюсами

На рисунке 2 видно, что все проводники, лежащие у полюса N, имеют положительный заряд, в то время как все проводники под полюсом S несут отрицательный заряд. Поэтому все проводники под полюсом N получат нисходящую силу (которая пропорциональна радиальной плотности потока В и току ротора), в то время как все проводники под полюсом S получат равную восходящую силу. В результате на роторе создается вращающий момент, величина которого пропорциональна произведению плотности магнитного потока и тока. На практике плотность магнитного потока не будет абсолютно однородна под полюсом, таким образом, сила на некоторых проводниках ротора будет больше, чем на других. Полный момент, развивающийся на валу, будет равен:

М = К Т ФI, (8)

где Ф - полный магнитный поток, коэффициент K T является постоянным для данного двигателя .

В соответствии с формулой (8) регулирование (ограничение) момента может быть достигнуто за счет изменения тока I или маг-нитного потока Ф. На практике регулирование момента чаще все-го осуществляется за счет регулирования тока. Регулирование тока двигателя производится его системой уп-равления (или оператором) за счет изменения подводимого к дви-гателю напряжения с помощью преобразователей электроэнер-гии или включением в его цепи добавочных резисторов .

Рассчитаем конструктивную постоянную двигателя, входящую в уравнение (8):

. (9)

Установим связь между потоком двигателя и током обмотки возбуждения. Как известно из теории электрических машин, из-за влияния насыщения магнитной системы эта связь нелинейная и имеет вид, показанный на рисунке 3. С целью лучшего использования железа машина проектируется так, чтобы в номинальном режиме рабочая точка находилась на перегибе кривой намагничивания. Примем величину магнитного потока пропорциональной току возбуждения .

Фпр.=Iв, (10)

где Iв - ток возбуждения.

Ф - реальное значение потока; Ф пр. - значение потока, принятое для расчётов

Рис. 3. Соотношение значений магнитного потока, принятого и реального

Так как у АД и ДПТ в проведенном эксперименте один общий вал, можем рассчитать момент, создаваемый ДПТ, и на основе полученных значений и показаний датчика скорости построить экспериментальную механическую характеристику АД (рисунок 4).

Рис.4. Механические характеристики асинхронного двигателя: расчетная и экспериментальная

Полученная экспериментальная характеристика в области низких значений момента расположена ниже характеристики, рассчитанной теоретически, и выше - в области высоких значений. Такое отклонение связано с разностью принятого для расчетов и реального значений магнитного потока (рис. 3). Оба графика пересекаются при Фпр.=Iв. ном.

Введем поправку в расчеты, установив нелинейную зависимость (рис. 5):

Ф=а·Iв, (11)

где а - коэффициент нелинейности.

Рис. 5. Отношение магнитного потока к току возбуждения

Полученная экспериментальная характеристика примет вид, показанный на рис. 6.

Рис.6. Механические характеристики асинхронного двигателя: расчетная и экспериментальная

Рассчитаем погрешность полученных экспериментально данных для случая, в котором магнитный поток линейно зависит от тока возбуждения (10), и случая, в котором эта зависимость нелинейная (11). В первом случае суммарная погрешность составляет 3,81 %, во втором 1,62 %.

Вывод

Механическая характеристика , построенная по экспериментальным данным, отличается от характеристики, построенной с использованием формулы Клосса (1) за счет принятого допущения Фпр.=Iв, расхождение составляет 3,81 %, при Iв=Iв.ном.=0,4 (А) данные характеристики совпадают. При достижении Iв номинального значения наступает насыщение магнитной системы ДПТ, в результате дальнейшее повышение тока возбуждения все меньше сказывается на значении магнитного потока. Поэтому для получения более точных значений момента необходимо вводить коэффициент насыщения, что позволяет повысить точность расчета в 2,3 раза. Механическая характеристика, построенная модельным путем, адекватно отражает работу реального двигателя, её можно брать за основу в дальнейших исследованиях.

Рецензенты :

  • Пюкке Георгий Александрович, д.т.н., профессор кафедры систем управления КамчатГТУ, г. Петропавловск-Камчатский.
  • Потапов Вадим Вадимович, д.т.н., профессор филиала ДВФУ, г. Петропавловск-Камчатский.

Библиографическая ссылка

Лиходедов А.Д. ПОСТРОЕНИЕ МЕХАНИЧЕСКОЙ ХАРАКТЕРИСТИКИ АСИНХРОННОГО ДВИГАТЕЛЯ И ЕЁ АПРОБАЦИЯ // Современные проблемы науки и образования. – 2012. – № 5.;
URL: http://science-education.ru/ru/article/view?id=6988 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Наиболее распространенными электрическими двигателями в промышленности, сельском хозяйстве и во всех других сферах применения являются асинхронные двигатели. Можно сказать, что асинхронные двигатели с короткозамкнутым ротором являются основным средством преобразования электрической энергии в механическую. Принцип работы асинхронного двигателя был рассмотрен в § 1.2 и 6.1.

Электромагнитное поле статора вращается в воздушном зазоре машины со скоростью со = 2nf { /р п . При стандартной частоте 50 Гц номинальная скорость ротора зависит от числа пар полюсов р п (табл. 6.1).

Таблица 6.1

Зависимость скорости вращения асинхронных двигателей от числа пар

полюсов

Число пар полюсов р п

Угловая скорость электромагнитного поля статора coq. 1/с

Скорость двигателя, об/мин

синхронная вращения л 0

примерная

номинальная

В зависимости от конструкции ротора асинхронного двигателя различают асинхронные двигатели с фазным и короткозамкнутым ротором. В двигателях с фазным ротором на роторе располагается трехфазная распределенная обмотка, соединенная обычно в звезду, концы обмоток соединены с контактными кольцами, через которые электрические цепи ротора выводятся из машины для подключения к пусковым сопротивлениям с последующим закорачиванием обмоток. В короткозамкнутых двигателях обмотка выполнена в виде беличьей клетки - стержней, замкнутых накоротко с двух сторон кольцами. Несмотря на специфическое конструктивное устройство, беличью клетку также можно рассматривать как трехфазную обмотку, замкнутую накоротко.

Электромагнитный момент М в асинхронном двигателе создается благодаря взаимодействию вращающегося магнитного поля статора Ф с активной составляющей тока ротора:

где к - конструктивная постоянная.

Ток ротора возникает благодаря ЭДС Е 2 , которая индуктируется в обмотках ротора вращающимся магнитным полем. Когда ротор неподвижен, асинхронный двигатель представляет собой трехфазный трансформатор с обмотками замкнутыми накоротко или нагруженными на пусковое сопротивление. Возникающую при неподвижном роторе в его обмотках ЭДС называют номинальной фазной ЭДС ротора Е 2н. Эта ЭДС приблизительно равна фазному напряжению статора, деленному на коэффициент трансформации к т:

При вращающемся двигателе ЭДС ротора Е 2 и частота этой ЭДС (а значит, и частота тока в обмотках ротора)^ зависят от частоты пересечения вращающимся полем проводников обмотки ротора (в короткозамкнутом двигателе - стержней). Эту частоту определяет разность скоростей поля статора со и ротора со, которую называют абсолютным скольжением :

При анализе режимов работы асинхронного двигателя с постоянной частотой питающего напряжения (50 Гц) обычно используют относительную величину скольжения

Когда ротор двигателя неподвижен, s = 1. Наибольшая ЭДС ротора при работе в двигательном режиме будет при неподвижном роторе (Е 2н), по мере увеличения скорости (уменьшении скольжения) ЭДС Е 2 будет уменьшаться:

Аналогично частота ЭДС и тока ротора/ 2 при неподвижном роторе будет равна частоте тока статора/, и по мере увеличения скорости будет уменьшаться пропорционально скольжению:

В номинальном режиме скорость ротора незначительно отличается от скорости поля, и номинальное скольжение составляет для двигателей общего применения мощностью 1,5...200,0 кВт всего 2...3%, а для двигателей большей мощности порядка 1%. Соответственно в номинальном режиме ЭДС ротора составляет 1...3% от номинального значения этой ЭДС при 5 = 1. Частота тока ротора в номинальном режиме будет составлять всего 0,5... 1,5 Гц. При 5 = 0, когда скорость ротора равна скорости поля, ЭДС ротора Е 2 и ток ротора / 2 будут равны нулю, момент двигателя также будет равен нулю. Этот режим является режимом идеального холостого хода.

Зависимость частоты ЭДС и тока ротора от скольжения определяет своеобразие механических характеристик асинхронного двигателя.

Работа асинхронного двигателя с фазным ротором, обмотки которого замкнуты накоротко. Как показано в (6.16), момент двигателя пропорционален потоку Ф и активной составляющей тока ротора / 2 " а, приведенного к статору. Поток, создаваемый обмотками, зависит от значения и частоты питающего напряжения

Ток ротора равен

где Z 2 - полное сопротивление фазы обмотки ротора.

Следует учитывать, что индуктивное сопротивление обмотки ротора х 2 является величиной переменной, зависящей от частоты тока ротора, а, следовательно, от скольжения: х 2 = 2п 2 2 = 2к t 2 .

При неподвижном роторе при s = 1 индуктивное сопротивление обмотки ротора максимальное. По мере роста скорости (уменьшении скольжения) индуктивное сопротивление ротора х 2 уменьшается и при достижении номинальной скорости составляет всего 1...3% от сопротивления при 5 = 1. Обозначив x 2s=l = х 2н, получим

Приведем параметры цепи ротора к обмотке статора с учетом коэффициента трансформации и на основе сохранения

равенства мощности:

И активная составляющая тока ротора имеет вид:

Разделив числитель и знаменатель формулы (6.26) на s, получим

Проведенная математическая операция - деление числителя и знаменателя на s , конечно, не изменяет справедливость равенства (6.29), но носит формальный характер, что нужно учитывать при рассмотрении этого соотношения. В действительности, как это следует из исходной формулы (6.26), от скольжения зависит индуктивное сопротивление ротора х 2 , а активное сопротивление г 2 остается постоянным. Использование выражения (6.29) позволяет по аналогии с трансформатором составить схему замещения асинхронного двигателя, которая представлена на рис. 6.4,а.


Рис. 6.4. Схемы замещения асинхронного двигателя: а - полная схема; б- схема с вынесенным намагничивающим контуром

Для анализа нерегулируемого электропривода эту схему можно упростить, перенеся контур намагничивания на зажимы двигателя. Упрощенная П-образная схема замещения представлена на рис. 6.4Д исходя из которой, ток ротора будет равен:

где х к =х + х" 2и - индуктивное сопротивление короткого замыкания. Активная составляющая тока ротора с учетом (6.28) будет:

Подставляя (6.22) и (6.31) в (6.16), получим выражение для момента асинхронного двигателя

Естественная механическая характеристика асинхронного двигателя оз = f(M) с фазным ротором, обмотки которого замкнуты накоротко, представлена на рис. 6.5. Здесь же показана электромеханическая характеристика двигателя ю = /(/j), определяемая из векторной диаграммы асинхронного двигателя на рис. 6.6, I x = I + / 2 ".

Рис. В.5. Естественная механическая и электромеханическая характеристики асинхронного двигателя

Рис. В.В. Упрощенная векторная диаграмма асинхронного двигателя

Полагая ток намагничивания реактивным, получим где

Приравняв производную dM/ds = , найдем максимальное значение момента асинхронного двигателя М к = М н и соответствующее ему значение критического скольжения s K:


где s K - критическое скольжение; знак «+» означает, что эта величина относится к двигательному режиму, знак «-» - к генераторному режиму рекуперативного торможения.

С учетом (6.34) и (6.35) формулу механической характеристики (6.32) можно преобразовать к более удобному для пользования выражению - формуле Клосса:

Для двигателей мощностью более 15 кВт сопротивление обмотки статора г, невелико и при частоте 50 Гц значительно меньше х к. Поэтому в приведенных ранее выражениях величиной г, можно пренебречь:

По полученным формулам можно рассчитать механическую характеристику асинхронного двигателя, пользуясь его паспортными данными, зная номинальный момент М н, номинальное скольжение s h и перегрузочную способность двигателя X.

Заметим, что анализируя электромагнитные процессы в асинхронном двигателе для установившегося режима, пришли к тем же соотношениям (6.9) и (6.10), которые были получены в § 6.1 на основе дифференциальных уравнений обобщенной двухфазной машины.

Анализ особенностей механической характеристики асинхронного двигателя (см. рис. 6.5). Она носит нелинейный характер и состоит из двух частей. Первая - рабочая часть - в пределах скольжения от 0 до s K . Эта часть характеристики близка к линейной и имеет отрицательную жесткость. Здесь момент, развиваемый двигателем, примерно пропорционален току статора 1 Х и ротора / 2 . Так как на этой части характеристики s то второе слагаемое знаменателя в формуле (6.39) существенно меньше первого, и им можно пренебречь. Тогда рабочую часть механической характеристики можно приближенно представить в линейной форме, где момент пропорционален скольжению:

Вторая часть механической характеристики асинхронного двигателя при скольжениях, больших s K (s>s K) криволинейная, с положительным значением жесткости (3 . Несмотря на то, что ток двигателя по мере роста скольжения увеличивается, момент, напротив, уменьшается. Если обмотки ротора асинхронного двигателя с фазным ротором во внешней цепи замкнуты накоротко, то пусковой ток такого двигателя (при со = 0 и 5 =1) будет очень большим и превысит номинальный в 10-12 раз. В то же время пусковой момент составит порядка 0,4...0,5 номинального. Как будет показано далее, для короткозамкнутых двигателей пусковой ток будет (5...6)/ н, а пусковой момент (1,1...1,3)А/ н.

Для объяснения такого несоответствия между пусковым током и моментом рассмотрим векторные диаграммы цепи ротора (рис. 6.7) для двух случаев: когда скольжение велико (пусковая часть характеристики); когда скольжение мало (рабочая часть характеристики). При пуске, когда 5=1, частота тока ротора равна частоте питающей сети (f 2 = 50 Гц). Индуктивное сопротивление обмотки ротора [см. (6.24)] велико и существенно превосходит активное сопротивление ротора /* 2 , ток отстает от ЭДС ротора на большой угол ф, т.е. ток ротора, в основном, реактивный. Поскольку ЭДС ротора в этом случае будет велика 2 = 2н, то и пусковой ток будет очень большим, однако из-за малого значения ср 2 активная составляющая тока ротора 1 2а будет невелика, следовательно, и момент, развиваемый двигателем, будет также невелик.

При разгоне двигателя скольжение уменьшается, ЭДС ротора, частота тока ротора, индуктивное сопротивление ротора пропорционально уменьшаются. Соответственно уменьшается значение полного тока ротора и статора, однако, вследствие повышения ф 2 активная составляющая тока ротора растет и растет момент двигателя.

Когда скольжение двигателя станет меньше s K , частота тока ротора уменьшится настолько, что индуктивное сопротивление станет уже меньше активного, и ток ротора будет практически активным (рис. 6.7,6), момент двигателя будет пропорционален току ротора. Так, если номинальное скольжение двигателя 5 н = 2%, то по сравнению с пусковыми параметрами частота тока ротора уменьшится в 50 раз, соответственно уменьшится индуктивное сопротивление ротора. Поэтому, несмотря на то, что ЭДС ротора также уменьшится в 50 раз, она будет достаточна для создания номинального тока ротора, обеспечивающего номинальный момент двигателя. Таким образом, своеобразие механической характеристики асинхронного двигателя определяется зависимостью индуктивного сопротивления ротора от скольжения.


Рис. В.7. Векторная диаграмма цепи ротора асинхронного двигателя: а - при большом скольжении: б - при и малом скольжении

Исходя из изложенного, для пуска асинхронного двигателя с фазным ротором нужно принять меры для увеличения пускового момента и снижения пусковых токов. С этой целью в цепь ротора включают добавочное активное сопротивление. Как следует из формул (6.34), (6.35), введение добавочного активного сопротивления не изменяет максимального момента двигателя, а лишь изменяет значение

критического скольжения: , где /?" доб - приведенное к

статору добавочное сопротивление в цепи ротора.

Введение добавочного активного сопротивления увеличивает полное сопротивление роторной цепи, в результате уменьшается пусковой ток и увеличивается ср роторной цепи, что ведет к увеличению активной составляющей тока ротора и, следовательно, пускового момента двигателя.

Обычно в роторную цепь двигателя с фазным ротором вводят секционированное сопротивление, ступени которого перемыкаются пусковыми контакторами. Расчет реостатных пусковых характеристик можно производить по формуле (6.39), используя значение s K , соответствующее R 2 б для каждой ступени пускового сопротивления. Схема включения дополнительных сопротивлений и соответствующие реостатные механические характеристики двигателя показаны на рис. 6.8. Механические характеристики имеют общую точку идеального холостого хода, равную скорости вращения электромагнитного поля статора со, а жесткость рабочей части характеристик уменьшается по мере возрастания суммарного активного сопротивления роторной цепи (2 + /? доб).


При пуске двигателя сначала вводится полное добавочное сопротивление /? 1доб. По достижении скорости, при которой момент двигателя Л/, становится близким к моменту сопротивления М с, часть пускового сопротивления шунтируется контактором К1, и двигатель переходит на характеристику, соответствующую значению добавочного сопротивления /? 2доб. При этом момент двигателя увеличивается до значения М 2 . По мере дальнейшего разгона двигателя контактором К2 закорачивается вторая ступень пускового сопротивления. После замыкания контактов контактора КЗ двигатель переходит на естественную характеристику и будет работать со скоростью, соответствующей точке 1.

Для расчета пусковых характеристик нужно задать значение момента М { при котором происходит переключение ступеней пусковых резисторов М х = 1,2М с. Пусковые значения момента М 2 (рис. 6.8) находят по формуле, = А/ , где т - число ступеней.

Для расчета ступеней пускового сопротивления найдем номинальное сопротивление ротора R 2h = 2н.лин/>/3 2н

Сопротивления ступеней:

Б короткозамкнутых асинхронных двигателях введение дополнительного сопротивления в цепь ротора невозможно. Однако тот же результат может быть получен, если воспользоваться эффектом вытеснения тока на поверхность проводника. Сущность этого явления состоит в следующем. Согласно закону электромагнитной индукции при протекании по проводнику переменного тока в нем индуктируется ЭДС самоиндукции, направленная против тока:

Значение этой ЭДС зависит от тока I , его частоты и индуктивности, определяемой характеристикой среды, окружающей проводник. Если проводник находится в воздухе, то магнитная проницаемость среды очень мала, следовательно, мала индуктивность L. В этом случае при частоте 50 Гц со= /с влияние ЭДС самоиндукции незначительно. Другое дело, когда проводник помещен в тело магнитопровода. Тогда индуктивность многократно увеличивается и ЭДС самоиндукции, направленная против тока, играет роль индуктивного сопротивления, препятствующего протеканию тока.


Рис. В.9. Конструкция ротора асинхронного короткозамкнутого двигателя: а - с глубоким пазом; б - с двойной клеткой; в - схема, поясняющая эффект вытеснения тока

Рассмотрим проявление действия ЭДС самоиндукции для случая проводника (стержня обмотки ротора), помещенного в глубокий паз магнитопровода ротора двигателя (рис. 6.9,а). Условно разделим сечение стержня на три части, которые соединены параллельно. Ток, протекающий по нижней части стержня образует поток Ф, магнитные силовые линии которого замыкаются по магнитопроводу. В этой части проводника возникает большая ЭДС самоиндукции e LV направленная против тока 1 2у

Ток / 23 (рис. 6.9, в), протекающий по верхней части стержня роторной обмотки образует поток Ф 3 , но, так как силовые линии этого потока в значительной части своей длины замыкаются по воздуху, то поток Ф 3 будет гораздо меньше, чем поток Ф,. Отсюда и ЭДС е 1Ъ будет во много раз меньше, чем e LV

Указанное распределение ЭДС самоиндукции по высоте стержня характерно для того режима, когда частота тока ротора велика - близка к 50 Гц. В этом случае, поскольку все три части стержня ротора соединены параллельно (см. рис. 6.9,в), то ток ротора / 2 пойдет по верхней части стержня, где меньше противоЭДС e L . Это явление называют вытеснением тока на поверхность паза. При этом эффективное сечение стержня, по которому идет ток, будет в несколько раз меньше, чем общее сечение стержня обмотки ротора. Таким образом, увеличивается активное сопротивление ротора г 2 . Отметим, что поскольку ЭДС самоиндукции зависит от частоты тока (т.е. от скольжения), то и сопротивления г 2 и х 2 являются функциями скольжения.

При пуске, когда скольжение велико, сопротивление г 2 увеличивается (в цепь ротора как бы вводится добавочное сопротивление). По мере разгона двигателя скольжение двигателя уменьшается, эффект вытеснения тока ослабевает, ток начинает распространяться вниз по сечению проводника, сопротивление г 2 уменьшается. При достижении рабочей скорости частота тока ротора настолько мала, что явление вытеснения тока уже не сказывается, ток протекает по всему сечению проводника, и сопротивление г 2 минимально. Благодаря такому автоматическому изменению сопротивления г 2 , пуск асинхронных короткозамкнутых двигателей протекает благоприятно: пусковой ток составляет

5,0...6,0 номинального, а пусковой момент 1,1...1,3 номинального.

Варьировать параметрами пусковой характеристики асинхронного двигателя при конструировании можно меняя форму паза, а также сопротивление материала стержней (состав сплава). Наряду с глубокими пазами применяют двойные пазы, образующие двойную беличью клетку (рис. 6.9,6), а также используют пазы грушевидной формы и др.

На рис. 6.10 представлены типовые механические характеристики различных модификаций асинхронных короткозамкнутых двигателей.


Рис. В.10. Примерные механические характеристики асинхронных короткозамкнутых двигателей: а - нормального исполнения; 6 - с повышенным скольжением; в - с повышенным пусковым моментом; г- краново-металлургических серий

Короткозамкнутые двигатели нормального исполнения используют для привода широкого класса рабочих машин и механизмов, прежде всего для приводов, работающих в длительном режиме. Для этого исполнения характерно высокое значение КПД и минимальное номинальное скольжение. Механическая характеристика в области больших скольжений имеет обычно небольшой провал, характеризуемый минимальным моментом М т{п.

Двигатели с повышенным скольжением имеют более мягкую механическую характеристику и используются в следующих случаях: когда два или более двигателя работают на общий вал, для механизмов (например, кривошипно-шатунных) с циклически изменяющейся нагрузкой, когда для преодоления сопротивления движению целесообразно использовать кинетическую энергию, запасаемую в движущихся частях электропривода, и для механизмов, работающих в повторно-кратковременном режиме.

Двигатели с повышенным пусковым моментом предназначены для механизмов с тяжелыми условиями пуска, например, для скребковых конвейеров.

Двигатели краново-металлургических серий предназначены для механизмов, работающих в повторно-кратковременном режиме с частыми пусками. Эти двигатели имеют большую перегрузочную способность, высокий пусковой момент, повышенную механическую прочность, но худшие энергетические показатели.

Аналитический расчет механических характеристик короткозамкнутых асинхронных двигателей достаточно сложен, поэтому приближенно характеристику можно построить по четырем точкам: при холостом ходе (5 = 0), при максимальном М к, пусковом М п и минимальном М т[п моменте в начале пуска. Данные этих характерных точек приведены в каталогах и справочниках на асинхронные двигатели. Расчет рабочей части механической характеристики коротко- замкнутого асинхронного двигателя (при скольжениях от 0 до 5 к) можно производить по формуле Клосса (6.36), (6.39), поскольку эффект вытеснения тока в рабочем режиме почти не проявляется.

Полная механическая характеристика асинхронного двигателя во всех квадрантах поля M-s, представлена на рис. 6.11.

Асинхронный двигатель может работать в трех тормозных режимах: рекуперативного и динамического торможения и торможения противовключением. Специфическим тормозным режимом является также конденсаторное торможение.

Рекуперативное генераторное торможение возможно, когда скорость ротора выше скорости вращения электромагнитного поля статора, чему соответствует отрицательное значение скольжения: оо>со 0 5

Несколько большее значение максимального момента в генераторном режиме объясняется тем, что потери в статоре (на сопротивлении г {) в двигательном режиме уменьшают момент на валу, а в генераторном режиме момент на валу должен быть больше, чтобы покрыть потери в статоре.

Отметим, что в режиме рекуперативного торможения асинхронный двигатель генерирует и отдает в сеть активную мощность, а для создания электромагнитного поля асинхронный двигатель и в режиме генератора должен обмениваться с сетью реактивной мощностью. Поэтому асинхронная машина не может работать автономным генератором при отключении от сети. Возможно, однако, подключение асинхронной машины к конденсаторным батареям, как к источнику реактивной мощности.

Способ динамического торможения : статорные обмотки отключают от сети переменного тока и подключают к источнику постоянного напряжения (рис. 6.12). При питании обмоток статора постоянным током создается неподвижное в пространстве электромагнитное поле, т.е. скорость вращения поля статора со дт = . Скольжение будет равно 5 ДТ = -со/со н, где со н - номинальная угловая скорость вращения поля статора.


Рис. 6 .12 а - включения динамического торможения; б - при соединении обмоток в звезду; в - при соединении обмоток в треугольник

Вид механических характеристик (рис. 6.13) подобен характеристикам в режиме рекуперативного торможения. Исходной точкой характеристик является начало координат. Регулировать интенсивность динамического торможения можно изменяя ток возбуждения / дт в обмотках статора. Чем выше ток, тем больший тормозной момент развивает двигатель. При этом, однако, нужно учитывать, что при токах / дт > / 1н начинает сказываться насыщение магнитной цепи двигателя.

Для асинхронных двигателей с фазным ротором регулирование тормозного момента можно производить также введением дополнительного сопротивления в цепь ротора. Эффект от введения добавочного сопротивления аналогичен тому, которое имеет место при пуске асинхронного двигателя: благодаря улучшению ф повышается критическое скольжение двигателя и увеличивается тормозной момент при больших скоростях вращения.

В режиме динамического торможения обмотки статора питаются от источника постоянного тока. Следует также иметь в виду, что в схеме динамического торможения ток / д т протекает (при соединении обмоток в звезду) не по трем, а по двум фазным обмоткам.

Для расчета характеристик нужно заменить реальный / эквивалентным током / , который, протекая по трем фазным обмоткам,

создает ту же намагничивающую силу, что и ток I . Для схемы на рис. 6.12,6 1 =0,816/ , а для схемы на рис. 6.12,в I =0,472/ .

Упрощенная формула для приближенного расчета механических характеристик (не учитывающая насыщение двигателя) подобна формуле Клосса для двигательного режима:

где - критический момент в режиме динамического торможения;

Следует подчеркнуть, что критическое скольжение в режиме динамического торможения существенно меньше критического скольжения в двигательном режиме, так как » к. Для получения максимального тормозного момента, равного максимальному моменту в двигательном режиме ток / экв должен в 2-4 раза превышать номинальный ток намагничивания / 0 . Напряжение источника питания постоянного тока будет значительно меньше номинального напряжения и примерно равно дт =(2, ...4)/ экв,.

Энергетически в режиме динамического торможения асинхронный двигатель работает как синхронный генератор, нагруженный на сопротивление роторной цепи двигателя. Вся механическая мощность, поступающая на вал двигателя при торможении, преобразуется в электрическую и идет на нагрев сопротивлений роторной цепи. Торможение противовключением может быть в двух случаях:

  • когда при работе двигателя необходимо его экстренно остановить, и для этого меняют порядок чередования фаз питания обмоток статора двигателя;
  • когда электромеханическая система движется в отрицательном направлении под действием спускаемого груза, а двигатель включается в направлении подъема, чтобы ограничить скорость спуска (режим протягивающего груза).

В обоих случаях электромагнитное поле статора и ротор двигателя вращаются в разные стороны. Скольжение двигателя в режиме про-

тивовключения всегда больше единицы:

В первом случае (рис. 6.14) двигатель, работавший в точке 1, после изменения порядка чередования фаз двигателя переходит в тормозной режим в точке Г, и скорость привода быстро снижается под действием тормозного момента М Т и статического М с. При замедлении до скорости, близкой к нулю, двигатель необходимо отключить, иначе он будет разгоняться в противоположном направлении вращения.

Рис. 6.14.

Во втором случае после снятия механического тормоза двигатель, включенный в направлении вверх, под действием силы тяжести спускаемого груза будет вращаться в противоположном направлении со скоростью, соответствующей точке 2. Работа в режиме противовключения под действием протягивающего груза возможна при использовании двигателей с фазным ротором. При этом в цепь ротора вводят значительное добавочное сопротивление, которому соответствует характеристика 2 на рис. 6.14.

Энергетически режим противовключения крайне неблагоприятен. Ток в этом режиме для асинхронных короткозамкнутых двигателей превосходит пусковой, достигая 10-кратного значения. Потери в роторной цепи двигателя складываются из потерь короткого замыкания двигателя и мощности, которая передается на вал двигателя при торможении: АР п = Л/ Т со 0 + М т (о.

Для короткозамкнутых двигателей режим противовключения возможен только в течение нескольких секунд. При использовании двигателей с фазным ротором в режиме противовключения обязательно включение в цепь ротора добавочного сопротивления. В этом случае потери энергии остаются такими же значительными, но они выносятся из объема двигателя в роторные сопротивления.

Устройство и применение АД с к.з. ротором.

1) Неподвижный статор: сердечник из шихтованной электротехнической стали с (как правило) тремя фазными обмотками, образующими полюса, и сдвинутыми в пространстве на 120 град.

Обмотка статора обычно выполняется с изоляцией лаком.

2) Подвижный короткозамкнутый ротор: сердечник по типу статорного. Обмотка в пазах – медные или алюминиевые стержни, закороченные кольцами по торцам сердечника.

Обмотка ротора в некоторых маломощных двигателях выполняется путем отливки под давлением из алюминия.

В маломощных АД воздушный зазор между статором и ротором составляет 0,2 – 0,3 мм, в двигателях большой мощности – несколько миллиметров.

13. Работа АД в режиме торможения противовключением .

Необходимо перевести схему в реверс и отключить ее при скорости равной нулю. Контроль скорости осуществляется реле скорости.

Способы регулирования частоты вращения асинхронного двигателя.

Для асинхронных двигателей с к.з. ротором



Для двигателя с фазным ротором : с помощью переключения числа ступеней в реостате в цепи ротора.

Пуск АД с фазным ротором.

Включение в ротор пуско-регулировочных реостатов позволяет ступенчато разогнать двигатель без превышения пускового тока больше 2-3 номинальных.

График –три ступени

Механическая характеристика асинхронного двигателя, её анализ.

1-х.х 2- номинальный режим 3- перегрузочная способность 4 – пуск

1.Механические характеристики строятся по 4 точкам:

где: – синхронная скорость;

– номинальная скорость;

– скольжение критическое

ƛ - перегрузочная способность двигателя;

Момент номинальный;

Частота вращения номинальная;

17. Принцип действия асинхронного двигателя .

На три фазы статорной (первичной) обмотки АД подается переменное напряжение u a =U m sin(wt ), u b =U m sin(wt -p/3); u c =U m sin(wt -2p/3), где w=2πf 1 .

В обмотках начинают протекать фазные токи, также сдвинутыми относительно друг друга на 120 эл.градусов.

Возникает магнитное поле статора, вращающееся с угловой скоростью Ω 0 =2πf 1 /p .

Магнитное поле статора пересекает проводники обмотки ротора (вторичной обмотки) и индуцирует в ней ЭДС:

Направление E 2 определяется по правилу правой руки. Наведенная ЭДС создает в замкнутой обмотке токи.

Индуктивное сопротивление (индуктивность) стержней ротора мало, ток практически совпадает по фазе с ЭДС.

В результате взаимодействия токов ротора с магнитным потоком возникают действующие на проводники ротора механические силы, направление которых определяется по правилу левой руки, и вращающий электромагнитный момент.

При этом для создания момента необходимо, чтобы поток статора пересекал бы проводники ротора, т. е, чтобы статорное поле вращалось со скоростью выше частоты вращения ротора. Эта разница в скорости вращения называется скольжением.

Таким образом, отличительной особенностью АД, давшей ему название, является то, что поле статора и ротор вращаются с разными скоростями, т.е. не синхронно или асинхронно.

Если поменять направление вращения поля статора, то ротор то же начнет вращаться в другую сторону – это реверсирование. Схемно для этого достаточно поменять местами две фазы любые.

18.Способы пуска асинхронных двигателей с к.з. ротором и их характеристика

Во всех способах достигается уменьшение пускового тока..Допускается прямой пуск, если мощность двигателя небольшая или двигатель запускается без нагрузки.

1.Изменением сопротивления в цепи статора, применяется в лифтах, недостатки: падает перегрузочная способность и пусковой момент

2. Изменением напряжения и частоты одновременно: с помощью частотного преобразователя напряжения, способ лучший по регулируемости, требует дорогостоящее оборудование

3 Изменением только величины напряжения: результат такой же, как в первом случае.

4. Переключением с треугольника на звезду (изменением числа пар полюсов)

Динамической механической характеристикой асинхронного двигателя называется зависимость между мгновенными значениями скорости (скольжения) и момента электрической машины для одного и того же момента времени переходного режима работы.

График динамической механической характеристики асинхронного двигателя можно получить из совместного решения системы дифференциальных уравнений электрического равновесия в статорной и роторной цепях двигателя и одного из уравнения его электромагнитного момента, которые приведены без их вывода:

В системе уравнений (5.35) приняты следующие обозначения:

а

– составляющая вектора напряжения обмотки статора, ориентированная вдоль оси b неподвижной системы координат;

– эквивалентное индуктивное сопротивление обмотки статора, равное индуктивному сопротивлению рассеяния обмотки статора и индуктивному сопротивлению от главного поля;

– эквивалентное индуктивное сопротивление обмотки ротора, приведенное к обмотке статора, равное индуктивному сопротивлению рассеяния обмотки ротора и индуктивному сопротивлению от главного поля;

– индуктивное сопротивление от главного поля (контура намагничивания), создаваемое суммарным действием токов статора;

а неподвижной системы координат;

– составляющая вектора потокосцепления обмотки статора, ориентированная вдоль оси b неподвижной системы координат;

а неподвижной системы координат;

– составляющая вектора потокосцепления обмотки ротора, ориентированная вдоль оси b неподвижной системы координат;

а неподвижной системы координат;

– составляющая вектора тока обмотки ротора, ориентированная вдоль оси b неподвижной системы координат.

Электромеханические процессы в асинхронном электроприводе описываются уравнением движения. Для случая

где – приведенный к валу двигателя момент сопротивления нагрузки; – приведенный к валу двигателя суммарный момент инерции электропривода.

Анализ динамических процессов преобразования энергии в асинхронном двигателе представляет собой сложную задачу в связи с существенной нелинейностью уравнений, описывающих асинхронный двигатель, обусловленной произведением переменных. Поэтому исследование динамических характеристик асинхронного двигателя целесообразно вести с применением средств вычислительной техники.

Совместное решение системы уравнений (5.62) и (5.63) в программной среде MathCAD позволяет рассчитать графики переходных процессов скорости ω и момента М при численных значениях параметров схемы замещения асинхронного двигателя, определенных в примере 5.3.

Так как динамическую механическую характеристику асинхронного двигателя можно получить только по результатам расчетов переходных процессов, го вначале приведем графики переходных процессов скорости (рис. 5.9) и момента (рис. 5.10) при пуске асинхронного двигателя прямым включением в сеть.

Рис. 5.9.

Рис. 5.10.

Рис. 5.11.

Графики и переходных процессов позволяют построить динамическую механическую характеристику асинхронного двигателя (рис. 5.1 I, кривая I) при пуске прямым включением в сеть. Для сравнения на этом же рисунке приведена статическая механическая характеристика – 2, рассчитанная по выражению (5.7) для тех же параметров схемы замещения асинхронного двигателя.

Анализ динамической механической характеристики асинхронного двигателя показывает, что максимальные ударные моменты при пуске превышают номинальный момент Л/н статической механической характеристики более чем в 4,5 раза и могут достичь недопустимо больших по механической прочности значений. Ударные моменты при пуске, и особенно при реверсе асинхронного двигателя, приводят к выходу из строя кинематики производственных механизмов и самого асинхронного двигателя.

Моделирование в программной среде MathCAD позволяет достаточно просто провести исследования динамических механических характеристик асинхронного двигателя. Установлено, что динамическая характеристика определяется не только параметрами схемы замещения асинхронного двигателя, но и параметрами электропривода, такими как эквивалентный момент инерции, момент сопротивленияна валу двигателя. Следовательно, асинхронный двигатель при данных параметрах питающей сети и схемы замещения обладает одной статической и множеством динамических механических характеристик.

Как следует из анализа динамических характеристик рис. 5.9-5.10, переходный процесс пуска короткозамкнутого асинхронного двигателя может иметь колебательный характер не только на начальном, но и на конечном участке, причем скорость двигателя превышает синхронную ω0. На практике колебания угловой скорости и момента двигателя на конечном участке переходного процесса наблюдаются не всегда. Кроме того, имеется большое число производственных механизмов, для которых такие колебания необходимо исключить. Характерный пример – механизмы лебедок и перемещения подъемных кранов. Для таких механизмов выпускаются асинхронные двигатели с мягкими механическими характеристиками или с повышенным скольжением. Установлено, чем мягче рабочий участок механической характеристики асинхронного двигателя и чем больше эквивалентный момент инерции электропривода, тем меньше амплитуда колебаний при выходе на установившуюся скорость и тем быстрее они затухают.

Исследования динамических механических характеристик имеют теоретическое и практическое значение, поскольку, как было показано в разделе 5.1.1, учет только статических механических характеристик может привести к не совсем корректным выводам и к искажению характера динамических нагрузок при пусках асинхронных двигателей. Исследования показывают, что максимальные значения динамического момента могут превышать номинальный момент двигателя при пуске прямым включением в сеть в 2-5 раз и в 4-10 раз при реверсировании двигателя, что необходимо учитывать при разработке и изготовлении электроприводов.

Анализ работы асинхронного электродвигателя удобно про­водить на основе его механических характеристик, представ­ляющих собой графически выраженную зависимость вида п = f (М ). Скоростными характеристиками в этих случаях пользуются весьма редко, так как для асинхронного электродвига­теля скоростная характеристика представляет собой зависи­мость числа оборотов от тока ротора, при определении которого встречается ряд трудностей, особенно, в случае асинхронных электродвигателей с короткозамкнутым ротором.

Для асинхронных электродвигателей, так же как и для электродвигателей постоянного тока, различают естественные и искусственные механические характеристики. Асинхронный электродвигатель работает на естественной механической ха­рактеристике в том случае, если его статорная обмотка подключена к сети трехфазного тока, напряжение и частота тока которой соответствует номинальным значениям, и если в цепь ротора не включены какие-либо дополнительные сопро­тивления.

На рис. 42 была приведена зависимость М = f (s ), которая позволяет легко перейти к механической характеристике n = f (M ), так как, согласно выражению (82) , от величины скольжения зависит скорость вращения ротора.

Подставив формулу (81) в выражение (91) и решив полу­ченное уравнение относительно п 2 получим следующее уравне­ние механических характеристик асинхронного электродвигателя

Член r 1 s опущен, ввиду его малости. Механические харак­теристики, соответствующие это­му уравнению, приведены на рис. 44.

Для практических построений уравнение (95) неудобно, поэто­му на практике обычно пользу­ются упрощенными уравнениями. Так, в случае работы электродвигателя на естественной ха­рактеристике при вращающем моменте, не превышающем 1,5 его номинального значения, сколь­жение обычно не превышает 0,1. Поэтому для указанного случая в уравнении (95) можно пренебречь членом x 2 s 2 /kr 2 ·M , в результате чего получим следующее упрощенное уравнение естествен­ной характеристики:

являющееся уравнением прямой линии, наклоненной к оси абсцисс.

Хотя уравнение (97) является приближенным, опыт пока­зывает, что при изменениях момента в пределах от М = 0 до М =1,5М н характеристики асинхронных электродвигателей действительно прямолинейны и уравнение (97) дает результа­ты, хорошо согласующиеся с опытными данными.

При введении в цепь ротора дополнительных сопротивлений характеристику п = f (М ) с достаточной для практических це­лей точностью также можно считать прямолинейной в указанных пределах для вращающего момента и производить ее построение по уравнению (97).

Таким образом, механические характеристики асинхронного электродвигателя в диапазоне от М = 0 до М = 1,5 М н при раз­личных сопротивлениях роторной цепи представляют семейство прямых, пересекающихся в одной точке, соответствующей син­хронному числу оборотов (рис. 45). Как показывает уравнение (97), наклон каждой характеристики к оси абсцисс определя­ется величиной активного сопротивления роторной цепи r 2 . Очевидно, чем больше сопротивле­ние, введенное в каждую фазу ро­тора, тем больше наклонена к оси абсцисс характеристика.

Как указывалось, обычно на практике скоростными характери­стиками асинхронных электродвига­телей не пользуются. Расчет же пусковых и регулировочных сопро­тивлений производят с помощью уравнения (97). Построение естест­венной характеристики можно вы­полнить по двум точкам - по синхронной скорости n ­ 1 = 60f /р при ну­левом моменте и по номинальной скорости при номинальном моменте.

Следует иметь в виду, что для асинхронных электродвигателей зависимость момента от тока ротора I 2 носит более слож­ный характер, чем зависимость момента от тока якоря для

электродвигателей постоянного тока. Поэтому скоростная ха­рактеристика асинхронного двигателя неидентична механиче­ской характеристике. Характеристика п = f (I 2 ) имеет вид, показанный на рис. 46. Там же дана характеристика n = f (I 1 ).