Открытие позитрона. Античастицы

Содержание 1. Определения – античастица, антивещество, антимир. 2. История открытия. 3. Опровержение теории. 4. Открытие позитрона. 5. Процесс аннигиляции. 6. Теория большого взрыва. 7. Зарождение античастиц. 8. Последние открытия и разработки. 9. Применение.


Античастица – частица двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, но отличающиеся от нее знаками некоторых характеристик взаимодействия. Античастица – частица двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, но отличающиеся от нее знаками некоторых характеристик взаимодействия.










«Если мы встанем на ту точку зрения, что полная асимметрия между положительными и отрицательными электрическими зарядами является фундаментальным законом природы, то мы должны рассматривать его как своего рода случайность, вся Солнечная система содержит избыток обычных отрицательных электронов и положительных протонов. Некоторые звезды построены иным путем: из позитронов и отрицательных протонов. В мире должно быть одинаковое число звезд каждого сорта,» - Поль Дирак. «Если мы встанем на ту точку зрения, что полная асимметрия между положительными и отрицательными электрическими зарядами является фундаментальным законом природы, то мы должны рассматривать его как своего рода случайность, вся Солнечная система содержит избыток обычных отрицательных электронов и положительных протонов. Некоторые звезды построены иным путем: из позитронов и отрицательных протонов. В мире должно быть одинаковое число звезд каждого сорта,» - Поль Дирак.




К чему Природе создавать дублирующие системы? К чему Природе создавать дублирующие системы? Скопление антивещества в нашей Вселенной не найдено. Скопление антивещества в нашей Вселенной не найдено. При неизменной однонаправленности времени отношение вещества и антивещества к пространству времени различны При неизменной однонаправленности времени отношение вещества и антивещества к пространству времени различны «упрощение» Природы «упрощение» Природы






Позитрон был открыт в 1932 году при помощи камеры Вильсона. Андерсон сфотографировал следы частиц, которые очень напоминали следы электронов, но имели изгиб противоположный следам электронам, что свидетельствовало о положительном электрическом заряде обнаруженных частиц. Позитрон был открыт в 1932 году при помощи камеры Вильсона. Андерсон сфотографировал следы частиц, которые очень напоминали следы электронов, но имели изгиб противоположный следам электронам, что свидетельствовало о положительном электрическом заряде обнаруженных частиц.










Образование античастиц Рождение античастиц происходит в столкновениях частиц вещества, разогнанных до энергий, превосходящих порог рождения пары частица-античастица. Рождение античастиц происходит в столкновениях частиц вещества, разогнанных до энергий, превосходящих порог рождения пары частица-античастица. В лабораторных условиях античастицы рождаются во взаимодействиях частиц на ускорителях; хранение образующихся античастиц осуществляют в накопительных кольцах при высоком вакууме. В лабораторных условиях античастицы рождаются во взаимодействиях частиц на ускорителях; хранение образующихся античастиц осуществляют в накопительных кольцах при высоком вакууме. В естественных условиях античастицы рождаются при взаимодействии первичных космических лучей с веществом, например, атмосферы Земли, а также должны рождаться в окрестностях пульсаров и активных ядер галактик. В естественных условиях античастицы рождаются при взаимодействии первичных космических лучей с веществом, например, атмосферы Земли, а также должны рождаться в окрестностях пульсаров и активных ядер галактик.

Позитрон (от англ. positive - положительный и «-трон» ) - античастица электрона. Относится к антивеществу, имеет электронный заряд +1, спин 1/2, лептонный заряд -1 и массу, равную массе электрона. При аннигиляции позитрона с электроном их масса преобразуется в энергию в форме 2-ух (и еще пореже - трёх и поболее) гамма-квантов.

Позитроны появляются в одном из видов радиоактивного распада (позитронная эмиссия), также при содействии фотонов с энергией больше 1,022 МэВ с веществом. Последний процесс именуется «рождением пар», ибо при его осуществлении фотон, взаимодействуя с электрическим полем ядра, образует вместе с этим электрон и позитрон.

Открытие позитрона

Существование позитрона в первый раз было предположено в 1928 Полем Дираком. Теория Дирака обрисовывала не только лишь электрон с отрицательным электронным зарядом, да и аналогичную частичку с положительным зарядом. Отсутствие таковой частички в природе рассматривалось как указание на «лишние решения» уравнений Дирака. Зато открытие позитрона явилось триумфом теории.

В согласовании с теорией Дирака электрон и позитрон могут рождаться парой, и на этот процесс должна быть затрачена энергия, равная энергии покоя этих частиц, 2-0,511 МэВ. Так как были известны естественные радиоактивные вещества, испускавшие γ-кванты с энергией больше 1 МэВ, представлялось вероятным получить позитроны в лаборатории, что и было изготовлено. Экспериментальное сопоставление параметров позитронов и электронов показало, что все физические свойства этих частиц, не считая знака электронного заряда, совпадают.

Позитрон был открыт в 1932 г. американским физиком Андерсоном при наблюдении галлактического излучения при помощи камеры Вильсона, помещённой в магнитное поле. Заглавие «позитрон» выдумал сам Андерсон. Любопытно, что Андерсон также предлагал, правда неудачно, переименовать электроны в «негатроны». Он сфотографировал следы частиц, которые очень напоминали следы электронов, однако имели извив под действием магнитного поля, обратный следам электронов, что свидетельствовало о положительном электронном заряде найденных частиц. Скоро после этого открытия, также при помощи камеры Вильсона, были получены фото, проливавшие свет на происхождение позитронов: под действием γ-квантов вторичного галлактического излучения позитроны рождались в парах с обыкновенными электронами. Такие характеристики вновь открытой частички оказались в поразительном согласии с уже имевшейся релятивистской теорией электрона Дирака. В 1934 г. Ирен и Фредерик Жолио-Кюри во Франции открыли ещё один источник позитронов - β+-радиоактивность.

Позитрон оказался первой открытой античастицей. Существование античастицы электрона и соответствие суммарных параметров 2-ух античастиц выводам теории Дирака, которая имела возможность быть обобщена на другие частички, указывало на возможность парной природы всех простых частиц и ориентировало следующие физические исследования. Такая ориентация оказалась необыкновенно плодотворной, и в текущее время парная природа простых частиц является точно установленным законом природы, обоснованным огромным числом экспериментальных фактов.

Аннигиляция

Из теории Дирака следует, что электрон и позитрон при столкновении должны аннигилировать с освобождением энергии, равной полной энергии сталкивающихся частиц. Оказалось, что этот процесс происходит приемущественно после торможения позитрона в веществе, когда полная энергия 2-ух частиц равна их энергии покоя 1,022 МэВ. На опыте были зарегистрированы пары γ-квантов с энергией по 0,511 МэВ, разлетавшихся в прямо обратных направлениях от мишени, облучавшейся позитронами.

Необходимость появления при аннигиляции электрона и позитрона не 1-го, как минимум 2-ух γ-квантов вытекает из закона сохранения импульса. Суммарный импульс в системе центра тяжести позитрона и электрона до процесса перевоплощения равен нулю, однако если б при аннигиляции появлялся только один γ-квант, он бы уносил импульс, который не равен нулю в хоть какой системе отсчёта.

С 1951 г. понятно, что в неких бесформенных телах, жидкостях и газах позитрон после торможения в значимом числе случаев сходу не аннигилирует, а образует на куцее время связанную с электроном систему, получившую заглавие позитроний. Позитроний в смысле собственных хим параметров аналогичен атому водорода, потому что представляет собой систему, состоящую из единичных положительного и отрицательного электронных зарядов, и может вступать в хим реакции. Так как электрон и позитрон - различные частички, то в связанном состоянии с наинизшей энергией они могут находиться не только лишь с антипараллельными, да и с параллельными спинами. В первом случае полный спин позитрония s = 0, что соответствует парапозитронию , а во 2-м - s = 1, что соответствует ортопозитронию . Любопытно, что аннигиляция электрон-позитронной пары в составе ортопозитрония не может сопровождаться рождением 2-ух γ-квантов. Два γ-кванта уносят друг относительно друга механические моменты, равные 1, и могут составить полный момент, равный нулю, однако не единице. Потому аннигиляция в данном случае сопровождается испусканием трёх γ-квантов с суммарной энергией 1,022 МэВ. Образование ортопозитрония втрое более возможно, чем парапозитрония, потому что отношение статистических весов (2s +1) обоих состояний позитрония 3:1. Но даже в телах с огромным процентом (до 50 %) аннигиляции пары в связанном состоянии, т. е. после образования позитрония, в основном возникают два γ-кванта и только очень изредка три. Дело в том, что время жизни парапозитрония около 10-10 сек, а ортопозитрония - около 10-7 сек. Долгоживущий ортопозитроний, безпрерывно взаимодействующий с атомами среды, не успевает аннигилировать с испусканием трёх γ-квантов до этого, чем позитрон, вводящий в его состав, аннигилирует с сторонним электроном в состоянии с антипараллельными спинами и с испусканием 2-ух γ-квантов.

Возникающие при аннигиляции остановившегося позитрона два гамма-кванта несут энергию по 511 кэВ и разлетаются в строго обратных направлениях. Данный факт позволяет установить положение точки, в какой произошла аннигиляция, и употребляется в позитрон-эмиссионной томографии.

В 2007 экспериментально подтверждено существование связанной системы из 2-ух позитронов и 2-ух электронов (молекулярный позитроний). Такая молекула распадается ещё резвее, чем атомарный позитроний.

Позитроны в природе

Считается, что в 1-ые мгновения после Огромного Взрыва количество позитронов и электронов во Вселенной было приблизительно идиентично, но при остывании эта симметрия нарушилась. Пока температура Вселенной не понизилась до 1 МэВ, термические фотоны повсевременно поддерживали в веществе определённую концентрацию позитронов путём рождения электрон-позитронных пар (такие условия есть и на данный момент в недрах жарких звёзд). После остывания вещества Вселенной ниже порога рождения пар оставшиеся позитроны аннигилировали с излишком электронов.

В космосе позитроны появляются при содействии с веществом гамма-квантов и энергичных частиц галлактических лучей, также при распаде неких типов этих частиц (к примеру, положительных мюонов). Следовательно, часть первичных галлактических лучей составляют позитроны, потому что в отсутствие электронов они размеренны. В неких областях Галактики обнаружены аннигиляционные гамма-линии 511 кэВ, доказывающие присутствие позитронов.

В солнечном термоядерном pp-цикле (также в CNO-цикле) часть реакций сопровождается эмиссией позитрона, который немедля аннигилирует с одним из электронов окружения; следовательно, часть солнечной энергии выделяется в виде позитронов, и в ядре Солнца всегда находится некое их количество (в равновесии меж процессами образования и аннигиляции).

Некие природные радиоактивные ядра (первичные, радиогенные, космогенные) испытывают бета-распад с излучением позитронов. К примеру, часть распадов природного изотопа 40K происходит конкретно по этому каналу. Не считая того, гамма-кванты с энергией более 1,022 МэВ, возникающие при радиоактивных распадах, могут рождать электрон-позитронные пары.

При содействии электрического антинейтрино (с энергией больше 1,8 МэВ) и протона происходит реакция оборотного бета-распада с образованием позитрона. Такая реакция происходит в природе, так как существует поток антинейтрино с энергией выше порога оборотного бета-распада, возникающих, к примеру, при бета-распаде природных радиоактивных ядер.

  • Позитрон - Википедия
  • Все известные характеристики позитрона систематизированы в обзоре Particle Data Group (.pdf)
  • Климов А. Н. Ядерная физика и ядерные реакторы. -М. Атомиздат, 1971.
  • Глядеть также:

  • Что такое антиматерия?
  • Что такое аннигиляция?
  • Открытие позитрона. Античастицы

    Существование частицы, идентичной электрону, но обладающей противоположным электрическим зарядом, было предсказано Полем Адриеном Морисом Дираком (1902–1984) на основании уравнения, введенного им в 1928 году. Уравнение Дирака описывает заряженную частицу со спином с учетом релятивистских эффектов, т.е., например, релятивистский электрон. Однако интересно, что вывести это уравнение Дирак пытался исходя из совсем других соображений: он пытался справиться с проблемой отрицательной плотности вероятности. Эта проблема заключалась в том, что при попытке обобщить уравнение Шредингера для волновой функции квантовой частицы

    на релятивистский случай получалось уравнение Клейна–Гордона,

    для которого нельзя было построить неотрицательную сохраняющуюся величину, имеющую смысл плотности вероятности. Другими словами, либо частица могла рождаться и исчезать, либо надо было интерпретировать понятие отрицательной вероятности. Обе альтернативы были разрушительными для квантовой механики.

    Дирак же догадался, что появление отрицательных вероятностей связано с тем, что уравнение Клейна–Гордона содержит вторую производную волновой функции по времени, и постарался построить уравнение с первой производной, переходящее в нерелятивистском пределе в уравнение Шредингера или его подобие. Оказалось, что для этого функция должна быть не комплексным числом, как ранее, а набором из четырех комплексных чисел:

    Для уравнения Дирака существовала неотрицательная плотность вероятность, равная , причем полная вероятность нахождения дираковской частицы хоть где-нибудь в пространстве со временем не меняется . Другими словами, частица сама собой не исчезает.

    Оказалось, что полученное уравнение обладает неожиданными свойствами. Во-первых, в нерелятивистском пределе оно описывало частицу с энергией спином и магнитным моментом, который соответствует g-фактору, равному двум. Состояние этой частицы определяли две из четырех компонент волновой функции Дирака. Во-вторых, две оставшихся компоненты описывали электрон с отрицательной энергией . Чтобы избежать спонтанное падение частиц в этот отрицательный континуум , Дирак предположил, что этот континуум квантовых состояний уже занят , и электроны не могут проникнуть в него в силу принципа Паули. Этот полностью занятый континуум состояний получил название моря Дирака (см. рис. ниже).

    Если частице из отрицательного континуума придать энергию, большую , она перейдет в положительный, при этом в отрицательном континууме образуется незанятое квантовое состояние - дырка. Эта дырка будет иметь положительный заряд и массу, равную электрону. Таким образом, при выходе электрона в положительный континуум физически наблюдается рождение пары частиц: электрона и его античастицы - позитрона. Именно такой перескок и изображен на рисунке выше.

    Экспериментально существование предсказанной положительно заряженной частицы было подтверждено Карлом Дэвидом Андерсоном (1905–1991) в 1932 году. Эта частица была открыта в космических лучах по ее отклонению в магнитном поле в камере Вильсона. По тому, по часовой или против часовой стрелке изгибалась траектория частицы, можно было судить о знаке ее заряда. Это является прямым следствием уравнения движения частицы в магнитном поле:

    (для простоты мы выписали нерелятивистское уравнение). Однако по фотографии трека в камере Вильсона напрямую нельзя определить направление движения частицы вдоль него. Две же одинаковые частицы, движущиеся в противоположных направлениях, будут отклоняться в магнитном поле в одну сторону. Чтобы определить истинное направление движения частицы, Андерсон разделил камеру Вильсона на две половины свинцовой перегородкой. Частица в результате прохождения через перегородку теряла скорость, поэтому радиус кривизны ее траектории

    уменьшался, что наблюдалось по фотографии. Таким образом Андерсон восстановил «начало» и «конец» трека частицы и сделал вывод об ее положительном заряде. Радиус кривизны траектории также давал отношение массы к заряду для открытой частицы - оно оказалось равным по модулю этому же отношению для электрона.

    В современной квантовой теории поля античастицы есть у всех частиц, обладающих каким бы то ни было зарядом. Тождественными себе являются фотон, бозон хиггса, ‑мезон и еще некоторые частицы. Кроме того, развитие квантовой теории поля, начавшейся, по сути дела, с уравнения Дирака, реабилитировало уравнение Клейна–Гордона и разрешило проблему отрицательных вероятностей совершенно другим способом - через так называемое вторичное квантование . Тем не менее, подход Дирака важен сам по себе как первый способ описания процессов рождения и уничтожения частиц. Уравнение Дирака является фундаментальным уравнением теоретической физики и описывает природу на фундаментальном уровне. Алгебраический же смысл, заложенный в это уравнение Дираком на этапе его вывода, заставляет задуматься о фундаментальной роли математики (и алгебры, в частности) в устройстве Вселенной.

    Позитрон (от англ. positive —положительный и «-трон») — античастица электрона. Относится к антивеществу, имеет электрический заряд +1, спин 1/2, лептонный заряд −1 и массу, равную массе электрона. Существование позитрона впервые было предположено в 1928 году Полем Дираком. Теория Дирака описывала не только электрон с отрицательным электрическим зарядом, но и аналогичную частицу с положительным зарядом. Отсутствие такой частицы в природе рассматривалось как указание на «лишние решения» уравнений Дирака. Зато открытие позитрона явилось триумфом теории. Позитрон был открыт в 1932 году американским физиком Андерсоном при наблюдении космического излучения с помощью камеры Вильсона, помещённой в магнитное поле. Направление искривления трека частицы указывало знак ее заряда. По радиусу кривизны и энергии частицы было определено отношение ее заряда к массе. Полученное значение по модулю было равно значению электрона. На рисунке представлена одна из первых фотографий, доказавшая существование позитрона. Можно сделать вывод о том, что позитрон двигался снизу вверх, и, пройдя свинцовую пластинку, потерял часть своей энергии. В связи с этим кривизна траектории увеличилась.
    (14.3) Вы видите фотографию, на которой запечатлен процесс образования пары электрон - позитрон. В камере Вильсона, находящейся в магнитном поле, пара оставляет характерный след и виде двурогой вилки. В результате проведения данных исследований ученые смогли сделать вывод о том, что такие преобразования, связанные с исчезновением (аннигиляцией) частиц и образованием новых, является именно превращением. Особенно наглядно обнаруживается это при аннигиляции пары электрон — позитрон. Обе частицы обладают определенной массой в состоянии покоя и электрическими зарядами. Фотоны же, которые при этом рождаются, не имеют зарядов и не обладают массой покоя, так как не могут существовать в состоянии покоя. В свое время открытие рождения и аннигиляции электронно-позитронных пар вызвало настоящую сенсацию в науке. До того никто не предполагал, что электрон, старейшая из частиц, важнейший строительный материал атомов, может оказаться не вечным. Впоследствии двойники — античастицы — были найдены у всех частиц. Античастицы противопоставляются частицам именно потому, что при встрече любой частицы с соответствующей античастицей происходит их аннигиляция. Обе частицы исчезают, превращаясь в кванты излучения или другие частицы. Сравнительно недавно были обнаружены антипротон и антинейтрон. Электрический заряд антипротона отрицателен. Атомы, ядра которых состоят из антинуклонов, а оболочка — из позитронов, образуют антивещество. В 1969 г. в нашей стране был впервые получен антигелий. Антивещество — самый совершенный источник энергии, самое калорийное «горючее». В состоянии ли будет человечество когда-либо это «горючее» использовать, сейчас сказать трудно.

    АНТИЧАСТИЦА Античастица - частица-двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, но отличающаяся от неё знаками всех других характеристик взаимодействия (зарядов, таких как электрический и цветовой заряды, барионное и лептонное квантовые числа). Само определение того, что называть «частицей» в паре частица-античастица, в значительной мере условно. Однако при данном выборе «частицы» её античастица определяется однозначно. Сохранение барионного числа в процессах слабого взаимодействия позволяет по цепочке распадов барионов определить «частицу» в любой паре барион-антибарион. Выбор электрона как «частицы» в паре электрон-позитрон фиксирует (вследствие сохранения лептонного числа в процессах слабого взаимодействия) определение состояния «частицы» в паре электронных нейтрино-антинейтрино. Переходы между лептонами различных поколений не наблюдались, так что определение «частицы» в каждом поколении лептонов, вообще говоря, может быть произведено независимо. Обычно по аналогии с электроном «частицами» называют отрицательно заряженные лептоны, что при сохранении лептонного числа определяет соответствующие нейтрино и антинейтрино. Для бозонов понятие «частица» может фиксироваться определением, например, гиперзаряда.

    СУЩЕСТВОВАНИЕ АНТИЧАСТИЦ Существование античастиц было предсказано П. А. М. Дираком. Полученное им в 1928 году квантовое релятивистское уравнение движения электрона (уравнение Дирака) с необходимостью содержало решения с отрицательными энергиями. В дальнейшем было показано, что исчезновение электрона с отрицательной энергией следует интерпретировать как возникновение частицы (той же массы) с положительной энергией и с положительным электрическим зарядом, то есть античастицы по отношению к электрону. Эта частица - позитрон - была открыта в 1932 году. В последующих экспериментах было установлено, что не только электрон, но и все остальные частицы имеют свои античастицы. В 1936 году в космических лучах были открыты мюон (μ−) и μ+ его античастица, а в 1947 - π− и π+ - мезоны, составляющие пару частица - античастица; в 1955 в опытах на ускорителе зарегистрирован антипротон, в 1956 - антинейтрон, в 1966 - антидейтерий, в 1970 - антигелий, в 1998 - антиводород и т. д.

    РОЖДЕНИЕ АНТИЧАСТИЦ Рождение античастиц происходит в столкновениях частиц вещества, разогнанных до энергий, превосходящих порог рождения пары частица-античастица (см. Рождение пар). В лабораторных условиях античастицы рождаются во взаимодействиях частиц на ускорителях; хранение образующихся античастиц осуществляют в накопительных кольцах при высоком вакууме. В естественных условиях античастицы рождаются при взаимодействии первичных космических лучей с веществом, например, атмосферы Земли, а также должны рождаться в окрестностях пульсаров и активных ядер галактик. Теоретическая астрофизика рассматривает образование античастиц (позитронов, антинуклонов) при аккреции вещества на чёрные дыры. В рамках современной космологии рассматривают рождение античастиц при испарении первичных чёрных дыр малой массы. При температурах, превышающих энергию покоя частиц данного сорта (в энергетической системе единиц), пары частица-античастица присутствуют в равновесии с веществом и электромагнитным излучением. Такие условия могут реализовываться для электронпозитронных пар в горячих ядрах массивных звёзд. Согласно теории горячей Вселенной, на очень ранних стадиях расширения Вселенной в равновесии с веществом и излучением находились пары частица-античастица всех сортов. В соответствии с моделями великого объединения эффекты нарушения С- и CPинвариантности в неравновесных процессах с несохранением барионного числа могли привести в очень ранней Вселенной к барионной асимметрии Вселенной даже в условиях строгого начального равенства числа частиц и античастиц. Это даёт физическое обоснование отсутствию наблюдательных данных о существовании во Вселенной объектов из античастиц.

    ПОЗИТРОН Позитрон (от англ. positive - положительный) - античастица электрона. Относится к антивеществу, имеет электрический заряд +1, спин 1/2, лептонный заряд − 1 и массу, равную массе электрона. При аннигиляции позитрона с электроном их масса превращается в энергию в форме двух (и гораздо реже - трёх и более) гамма-квантов. Позитроны возникают в одном из видов радиоактивного распада (позитронная эмиссия), а также при взаимодействии фотонов с энергией больше 1, 022 Мэ. В свеществом. Последний процесс называется «рождением пар» , ибо при его осуществлении фотон, взаимодействуя с электромагнитным полем ядра, образует одновременно электрон и позитрон. Также позитроны способны возникать в процессах рождения электрон-позитронных пар в сильном электрическом поле.

    ОТКРЫТИЕ ПОЗИТРОНА Существование позитрона впервые было предположено в 1928 году Полем Дираком. Теория Дирака описывала не только электрон с отрицательнымэлектрическим зарядом, но и аналогичную частицу с положительным зарядом. Отсутствие такой частицы в природе рассматривалось как указание на «лишние решения» уравнений Дирака. Зато открытие позитрона явилось триумфом теории. Позитрон был открыт в 1932 году американским физиком Андерсоном при наблюдении космического излучения с помощью камеры Вильсона, помещённой вмагнитное поле. Он сфотографировал следы частиц, которые очень напоминали следы электронов, но имели изгиб под действием магнитного поля, противоположный следам электронов, что свидетельствовало о положительном электрическом заряде обнаруженных частиц. Вскоре после этого открытия, также с помощью камеры Вильсона, были получены фотографии, проливавшие свет на происхождение позитронов: под действием γ-квантов вторичного космического излучения позитроны рождались в парах с обычными электронами. Такие свойства вновь открытой частицы оказались в поразительном согласии с уже имевшейся релятивистской теорией электрона Дирака. В 1934 году Ирен и Фредерик Жолио-Кюри во Франции открыли ещё один источник позитронов - β+радиоактивность.

    АННИГИЛЯЦИЯ Из теории Дирака следует, что электрон и позитрон при столкновении должны аннигилировать с освобождением энергии, равной полной энергии сталкивающихся частиц. Оказалось, что этот процесс происходит главным образом после торможения позитрона в веществе, когда полная энергия двух частиц равна их энергии покоя 1, 022 Мэ. В. На опыте были зарегистрированы пары γ-квантов с энергией по 0, 511 Мэ. В, разлетавшихся в прямо противоположных направлениях от мишени, облучавшейся позитронами. Необходимость возникновения при аннигиляции электрона и позитрона не одного, а как минимум двух γ-квантов вытекает из закона сохранения импульса. Суммарный импульс в системе центра масс позитрона и электрона до процесса превращения равен нулю, но если бы при аннигиляции возникал только один γ-квант, он бы уносил импульс, который не равен нулю в любой системе отсчёта.